These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
322 related articles for article (PubMed ID: 8683579)
1. Mechanism of Fe(III)-Zn(II) purple acid phosphatase based on crystal structures. Klabunde T; Sträter N; Fröhlich R; Witzel H; Krebs B J Mol Biol; 1996 Jun; 259(4):737-48. PubMed ID: 8683579 [TBL] [Abstract][Full Text] [Related]
2. Crystal structure of a purple acid phosphatase containing a dinuclear Fe(III)-Zn(II) active site. Sträter N; Klabunde T; Tucker P; Witzel H; Krebs B Science; 1995 Jun; 268(5216):1489-92. PubMed ID: 7770774 [TBL] [Abstract][Full Text] [Related]
3. Comparative theoretical studies of the phosphomonoester hydrolysis mechanism by purple acid phosphatases. Retegan M; Milet A; Jamet H J Phys Chem A; 2010 Jul; 114(26):7110-6. PubMed ID: 20550096 [TBL] [Abstract][Full Text] [Related]
4. The active site of purple acid phosphatase from sweet potatoes (Ipomoea batatas) metal content and spectroscopic characterization. Durmus A; Eicken C; Sift BH; Kratel A; Kappl R; Hüttermann J; Krebs B Eur J Biochem; 1999 Mar; 260(3):709-16. PubMed ID: 10102999 [TBL] [Abstract][Full Text] [Related]
5. Fluoride inhibition of bovine spleen purple acid phosphatase: characterization of a ternary enzyme-phosphate-fluoride complex as a model for the active enzyme-substrate-hydroxide complex. Pinkse MW; Merkx M; Averill BA Biochemistry; 1999 Aug; 38(31):9926-36. PubMed ID: 10433699 [TBL] [Abstract][Full Text] [Related]
6. The amino acid sequence of the red kidney bean Fe(III)-Zn(II) purple acid phosphatase. Determination of the amino acid sequence by a combination of matrix-assisted laser desorption/ionization mass spectrometry and automated Edman sequencing. Klabunde T; Stahl B; Suerbaum H; Hahner S; Karas M; Hillenkamp F; Krebs B; Witzel H Eur J Biochem; 1994 Dec; 226(2):369-75. PubMed ID: 8001554 [TBL] [Abstract][Full Text] [Related]
7. Phosphate forms an unusual tripodal complex with the Fe-Mn center of sweet potato purple acid phosphatase. Schenk G; Gahan LR; Carrington LE; Mitic N; Valizadeh M; Hamilton SE; de Jersey J; Guddat LW Proc Natl Acad Sci U S A; 2005 Jan; 102(2):273-8. PubMed ID: 15625111 [TBL] [Abstract][Full Text] [Related]
8. The Fe(III)Zn(II) form of recombinant human purple acid phosphatase is not activated by proteolysis. Funhoff EG; Bollen M; Averill BA J Inorg Biochem; 2005 Feb; 99(2):521-9. PubMed ID: 15621285 [TBL] [Abstract][Full Text] [Related]
9. Crystal structures of a purple acid phosphatase, representing different steps of this enzyme's catalytic cycle. Schenk G; Elliott TW; Leung E; Carrington LE; Mitić N; Gahan LR; Guddat LW BMC Struct Biol; 2008 Jan; 8():6. PubMed ID: 18234116 [TBL] [Abstract][Full Text] [Related]
10. Evidence for a conserved binding motif of the dinuclear metal site in mammalian and plant purple acid phosphatases: 1H NMR studies of the di-iron derivative of the Fe(III)Zn(II) enzyme from kidney bean. Battistuzzi G; Dietrich M; Löcke R; Witzel H Biochem J; 1997 May; 323 ( Pt 3)(Pt 3):593-6. PubMed ID: 9169589 [TBL] [Abstract][Full Text] [Related]
11. Conservation of the active site motif in Aspergillus niger (ficuum) pH 6.0 optimum acid phosphatase and kidney bean purple acid phosphatase. Mullaney EJ; Ullah AH Biochem Biophys Res Commun; 1998 Feb; 243(2):471-3. PubMed ID: 9480832 [TBL] [Abstract][Full Text] [Related]
12. Binuclear metal centers in plant purple acid phosphatases: Fe-Mn in sweet potato and Fe-Zn in soybean. Schenk G; Ge Y; Carrington LE; Wynne CJ; Searle IR; Carroll BJ; Hamilton S; de Jersey J Arch Biochem Biophys; 1999 Oct; 370(2):183-9. PubMed ID: 10510276 [TBL] [Abstract][Full Text] [Related]
13. Electronic structure and spectro-structural correlations of Fe(III)Zn(II) biomimetics for purple acid phosphatases: relevance to DNA cleavage and cytotoxic activity. Peralta RA; Bortoluzzi AJ; de Souza B; Jovito R; Xavier FR; Couto RA; Casellato A; Nome F; Dick A; Gahan LR; Schenk G; Hanson GR; de Paula FC; Pereira-Maia EC; de P Machado S; Severino PC; Pich C; Bortolotto T; Terenzi H; Castellano EE; Neves A; Riley MJ Inorg Chem; 2010 Dec; 49(24):11421-38. PubMed ID: 21080710 [TBL] [Abstract][Full Text] [Related]
15. Mechanism of hydrolysis of phosphate esters by the dimetal center of 5'-nucleotidase based on crystal structures. Knöfel T; Sträter N J Mol Biol; 2001 May; 309(1):239-54. PubMed ID: 11491293 [TBL] [Abstract][Full Text] [Related]
16. Structure-function relationships of purple acid phosphatase from red kidney beans based on heterologously expressed mutants. Truong NT; Naseri JI; Vogel A; Rompel A; Krebs B Arch Biochem Biophys; 2005 Aug; 440(1):38-45. PubMed ID: 16009331 [TBL] [Abstract][Full Text] [Related]
17. X-ray absorption spectroscopic studies of the FeZn derivative of uteroferrin. Wang X; Randall CR; True AE; Que L Biochemistry; 1996 Nov; 35(44):13946-54. PubMed ID: 8909292 [TBL] [Abstract][Full Text] [Related]
18. Evidence for nonbridged coordination of p-nitrophenyl phosphate to the dinuclear Fe(III)-M(II) center in bovine spleen purple acid phosphatase during enzymatic turnover. Merkx M; Pinkse MW; Averill BA Biochemistry; 1999 Aug; 38(31):9914-25. PubMed ID: 10433698 [TBL] [Abstract][Full Text] [Related]
19. Zn-exchange and Mössbauer studies on the [Fe-Fe] derivatives of the purple acid Fe(III)-Zn(II)-phosphatase from kidney beans. Suerbaum H; Körner M; Witzel H; Althaus E; Mosel BD; Müller-Warmuth W Eur J Biochem; 1993 May; 214(1):313-21. PubMed ID: 8508801 [TBL] [Abstract][Full Text] [Related]
20. Structural relationship between the mammalian Fe(III)-Fe(II) and the Fe(III)-Zn(II) plant purple acid phosphatases. Klabunde T; Sträter N; Krebs B; Witzel H FEBS Lett; 1995 Jun; 367(1):56-60. PubMed ID: 7601285 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]