These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
150 related articles for article (PubMed ID: 8684606)
1. Opposite regulation by the beta-adrenoceptor-cyclic AMP system of synaptic plasticity in the medial and lateral amygdala in vitro. Watanabe Y; Ikegaya Y; Saito H; Abe K Neuroscience; 1996 Apr; 71(4):1031-5. PubMed ID: 8684606 [TBL] [Abstract][Full Text] [Related]
2. Cross-modulation of synaptic plasticity by beta-adrenergic and 5-HT1A receptors in the rat basolateral amygdala. Wang SJ; Cheng LL; Gean PW J Neurosci; 1999 Jan; 19(2):570-7. PubMed ID: 9880577 [TBL] [Abstract][Full Text] [Related]
3. Masking of forskolin-induced long-term potentiation by adenosine accumulation in area CA1 of the rat hippocampus. Lu KT; Gean PW Neuroscience; 1999 Jan; 88(1):69-78. PubMed ID: 10051190 [TBL] [Abstract][Full Text] [Related]
4. Both protein kinase A and mitogen-activated protein kinase are required in the amygdala for the macromolecular synthesis-dependent late phase of long-term potentiation. Huang YY; Martin KC; Kandel ER J Neurosci; 2000 Sep; 20(17):6317-25. PubMed ID: 10964936 [TBL] [Abstract][Full Text] [Related]
5. Blockade of isoproterenol-induced synaptic potentiation by tetra-9-aminoacridine in the rat amygdala. Wang SJ; Huang CC; Hsu KS; Tsai JJ; Huang CC; Gean PW Neurosci Lett; 1996 Aug; 214(2-3):87-90. PubMed ID: 8878090 [TBL] [Abstract][Full Text] [Related]
6. Long-term regulation of synaptic acetylcholine release and nicotinic transmission: the role of cyclic AMP. Briggs CA; McAfee DA; McCaman RE Br J Pharmacol; 1988 Feb; 93(2):399-411. PubMed ID: 2833971 [TBL] [Abstract][Full Text] [Related]
7. Noradrenergic enhancement of long-term potentiation at mossy fiber synapses in the hippocampus. Hopkins WF; Johnston D J Neurophysiol; 1988 Feb; 59(2):667-87. PubMed ID: 2832552 [TBL] [Abstract][Full Text] [Related]
8. Change in bi-directional plasticity at CA1 synapses in hippocampal slices taken from 6-hydroxydopamine-treated rats: the role of endogenous norepinephrine. Yang HW; Lin YW; Yen CD; Min MY Eur J Neurosci; 2002 Sep; 16(6):1117-28. PubMed ID: 12383241 [TBL] [Abstract][Full Text] [Related]
9. Adenylate cyclase-mediated forms of neuronal plasticity in hippocampal area CA1 are reduced with aging. Reis GF; Lee MB; Huang AS; Parfitt KD J Neurophysiol; 2005 Jun; 93(6):3381-9. PubMed ID: 15911893 [TBL] [Abstract][Full Text] [Related]
10. Evidence for different interactions between beta(1)- and beta(2)-adrenoceptor subtypes with adenylyl cyclase in the rat brain: a concentration-response study using forskolin. Morin D; Sapena R; Tillement JP; Urien S Pharmacol Res; 2000 Apr; 41(4):435-43. PubMed ID: 10704268 [TBL] [Abstract][Full Text] [Related]
11. Enhancement of NMDA receptor-mediated synaptic potential by isoproterenol is blocked by Rp-adenosine 3',5'-cyclic monophosphothioate. Huang CC; Tsai JJ; Gean PW Neurosci Lett; 1993 Oct; 161(2):207-10. PubMed ID: 7903801 [TBL] [Abstract][Full Text] [Related]
12. Bidirectional synaptic plasticity at nociceptive afferents in the rat central amygdala. López de Armentia M; Sah P J Physiol; 2007 Jun; 581(Pt 3):961-70. PubMed ID: 17379642 [TBL] [Abstract][Full Text] [Related]
13. Monoaminergic long-term facilitation of GABA-mediated inhibitory transmission at cerebellar synapses. Mitoma H; Konishi S Neuroscience; 1999; 88(3):871-83. PubMed ID: 10363824 [TBL] [Abstract][Full Text] [Related]
14. Noradrenergic regulation of synaptic plasticity in the hippocampal CA1 region. Katsuki H; Izumi Y; Zorumski CF J Neurophysiol; 1997 Jun; 77(6):3013-20. PubMed ID: 9212253 [TBL] [Abstract][Full Text] [Related]
15. Differential regulation of synaptic transmission by adrenergic agonists via protein kinase A and protein kinase C in layer V pyramidal neurons of rat cerebral cortex. Kobayashi M Neuroscience; 2007 Jun; 146(4):1772-84. PubMed ID: 17478051 [TBL] [Abstract][Full Text] [Related]
16. Beta-adrenoceptor-coupled Gs protein facilitates the activation of cAMP-dependent cardiac Cl- current. Pelzer S; You Y; Shuba YM; Pelzer DJ Am J Physiol; 1997 Dec; 273(6):H2539-48. PubMed ID: 9435585 [TBL] [Abstract][Full Text] [Related]
17. β-Adrenergic Receptors/Epac Signaling Increases the Size of the Readily Releasable Pool of Synaptic Vesicles Required for Parallel Fiber LTP. Martín R; García-Font N; Suárez-Pinilla AS; Bartolomé-Martín D; Ferrero JJ; Luján R; Torres M; Sánchez-Prieto J J Neurosci; 2020 Nov; 40(45):8604-8617. PubMed ID: 33046543 [TBL] [Abstract][Full Text] [Related]
18. Beta-adrenergic facilitation of synaptic plasticity in the rat basolateral amygdala in vitro is gradually reversed by corticosterone. Pu Z; Krugers HJ; Joëls M Learn Mem; 2009 Feb; 16(2):155-60. PubMed ID: 19196909 [TBL] [Abstract][Full Text] [Related]
19. Potentiation of the relaxing action of isoproterenol by forskolin in rabbit aortic rings: the involvement of beta 2-adrenoceptors. Satake N; Shibata S Gen Pharmacol; 1997 May; 28(5):753-6. PubMed ID: 9184814 [TBL] [Abstract][Full Text] [Related]
20. Nitric oxide is required for the induction and heterosynaptic spread of long-term potentiation in rat cerebellar slices. Jacoby S; Sims RE; Hartell NA J Physiol; 2001 Sep; 535(Pt 3):825-39. PubMed ID: 11559778 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]