BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 8684606)

  • 1. Opposite regulation by the beta-adrenoceptor-cyclic AMP system of synaptic plasticity in the medial and lateral amygdala in vitro.
    Watanabe Y; Ikegaya Y; Saito H; Abe K
    Neuroscience; 1996 Apr; 71(4):1031-5. PubMed ID: 8684606
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cross-modulation of synaptic plasticity by beta-adrenergic and 5-HT1A receptors in the rat basolateral amygdala.
    Wang SJ; Cheng LL; Gean PW
    J Neurosci; 1999 Jan; 19(2):570-7. PubMed ID: 9880577
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Masking of forskolin-induced long-term potentiation by adenosine accumulation in area CA1 of the rat hippocampus.
    Lu KT; Gean PW
    Neuroscience; 1999 Jan; 88(1):69-78. PubMed ID: 10051190
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Both protein kinase A and mitogen-activated protein kinase are required in the amygdala for the macromolecular synthesis-dependent late phase of long-term potentiation.
    Huang YY; Martin KC; Kandel ER
    J Neurosci; 2000 Sep; 20(17):6317-25. PubMed ID: 10964936
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Blockade of isoproterenol-induced synaptic potentiation by tetra-9-aminoacridine in the rat amygdala.
    Wang SJ; Huang CC; Hsu KS; Tsai JJ; Huang CC; Gean PW
    Neurosci Lett; 1996 Aug; 214(2-3):87-90. PubMed ID: 8878090
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Long-term regulation of synaptic acetylcholine release and nicotinic transmission: the role of cyclic AMP.
    Briggs CA; McAfee DA; McCaman RE
    Br J Pharmacol; 1988 Feb; 93(2):399-411. PubMed ID: 2833971
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Noradrenergic enhancement of long-term potentiation at mossy fiber synapses in the hippocampus.
    Hopkins WF; Johnston D
    J Neurophysiol; 1988 Feb; 59(2):667-87. PubMed ID: 2832552
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Change in bi-directional plasticity at CA1 synapses in hippocampal slices taken from 6-hydroxydopamine-treated rats: the role of endogenous norepinephrine.
    Yang HW; Lin YW; Yen CD; Min MY
    Eur J Neurosci; 2002 Sep; 16(6):1117-28. PubMed ID: 12383241
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Adenylate cyclase-mediated forms of neuronal plasticity in hippocampal area CA1 are reduced with aging.
    Reis GF; Lee MB; Huang AS; Parfitt KD
    J Neurophysiol; 2005 Jun; 93(6):3381-9. PubMed ID: 15911893
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evidence for different interactions between beta(1)- and beta(2)-adrenoceptor subtypes with adenylyl cyclase in the rat brain: a concentration-response study using forskolin.
    Morin D; Sapena R; Tillement JP; Urien S
    Pharmacol Res; 2000 Apr; 41(4):435-43. PubMed ID: 10704268
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhancement of NMDA receptor-mediated synaptic potential by isoproterenol is blocked by Rp-adenosine 3',5'-cyclic monophosphothioate.
    Huang CC; Tsai JJ; Gean PW
    Neurosci Lett; 1993 Oct; 161(2):207-10. PubMed ID: 7903801
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bidirectional synaptic plasticity at nociceptive afferents in the rat central amygdala.
    López de Armentia M; Sah P
    J Physiol; 2007 Jun; 581(Pt 3):961-70. PubMed ID: 17379642
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Monoaminergic long-term facilitation of GABA-mediated inhibitory transmission at cerebellar synapses.
    Mitoma H; Konishi S
    Neuroscience; 1999; 88(3):871-83. PubMed ID: 10363824
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Noradrenergic regulation of synaptic plasticity in the hippocampal CA1 region.
    Katsuki H; Izumi Y; Zorumski CF
    J Neurophysiol; 1997 Jun; 77(6):3013-20. PubMed ID: 9212253
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nitric oxide is required for the induction and heterosynaptic spread of long-term potentiation in rat cerebellar slices.
    Jacoby S; Sims RE; Hartell NA
    J Physiol; 2001 Sep; 535(Pt 3):825-39. PubMed ID: 11559778
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Differential regulation of synaptic transmission by adrenergic agonists via protein kinase A and protein kinase C in layer V pyramidal neurons of rat cerebral cortex.
    Kobayashi M
    Neuroscience; 2007 Jun; 146(4):1772-84. PubMed ID: 17478051
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Beta-adrenoceptor-coupled Gs protein facilitates the activation of cAMP-dependent cardiac Cl- current.
    Pelzer S; You Y; Shuba YM; Pelzer DJ
    Am J Physiol; 1997 Dec; 273(6):H2539-48. PubMed ID: 9435585
    [TBL] [Abstract][Full Text] [Related]  

  • 18. β-Adrenergic Receptors/Epac Signaling Increases the Size of the Readily Releasable Pool of Synaptic Vesicles Required for Parallel Fiber LTP.
    Martín R; García-Font N; Suárez-Pinilla AS; Bartolomé-Martín D; Ferrero JJ; Luján R; Torres M; Sánchez-Prieto J
    J Neurosci; 2020 Nov; 40(45):8604-8617. PubMed ID: 33046543
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Beta-adrenergic facilitation of synaptic plasticity in the rat basolateral amygdala in vitro is gradually reversed by corticosterone.
    Pu Z; Krugers HJ; Joëls M
    Learn Mem; 2009 Feb; 16(2):155-60. PubMed ID: 19196909
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Potentiation of the relaxing action of isoproterenol by forskolin in rabbit aortic rings: the involvement of beta 2-adrenoceptors.
    Satake N; Shibata S
    Gen Pharmacol; 1997 May; 28(5):753-6. PubMed ID: 9184814
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.