BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 8684606)

  • 21. Adenosine A2 receptors modulate hippocampal synaptic transmission via a cyclic-AMP-dependent pathway.
    Kessey K; Mogul DJ
    Neuroscience; 1998 May; 84(1):59-69. PubMed ID: 9522362
    [TBL] [Abstract][Full Text] [Related]  

  • 22. β-Adrenoceptors and synaptic plasticity in the perirhinal cortex.
    Laing M; Bashir ZI
    Neuroscience; 2014 Jul; 273(100):163-73. PubMed ID: 24836853
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effect of adrenergic agents on alpha-amylase release and adenosine 3',5'-monophosphate accumulation in rat parotid tissue slices.
    Butcher FR; Goldman JA; Nemerovski
    Biochim Biophys Acta; 1975 May; 392(1):82-94. PubMed ID: 164957
    [TBL] [Abstract][Full Text] [Related]  

  • 24. D1/D5 dopamine receptors inhibit depotentiation at CA1 synapses via cAMP-dependent mechanism.
    Otmakhova NA; Lisman JE
    J Neurosci; 1998 Feb; 18(4):1270-9. PubMed ID: 9454837
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Impairment of adenylyl cyclase-mediated glutamatergic synaptic plasticity in the periaqueductal grey in a rat model of neuropathic pain.
    Ho YC; Cheng JK; Chiou LC
    J Physiol; 2015 Jul; 593(13):2955-73. PubMed ID: 25868084
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Functional effects of long-term activation on human beta 2- and beta 3-adrenoceptor signalling.
    Nantel F; Bouvier M; Strosberg AD; Marullo S
    Br J Pharmacol; 1995 Mar; 114(5):1045-51. PubMed ID: 7780639
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Presynaptic mechanism underlying cAMP-induced synaptic potentiation in medial prefrontal cortex pyramidal neurons.
    Huang CC; Hsu KS
    Mol Pharmacol; 2006 Mar; 69(3):846-56. PubMed ID: 16306229
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Metabotropic glutamate receptor agonists potentiate cyclic AMP formation induced by forskolin or beta-adrenergic receptor activation in cerebral cortical astrocytes in culture.
    Balázs R; Miller S; Chun Y; O'Toole J; Cotman CW
    J Neurochem; 1998 Jun; 70(6):2446-58. PubMed ID: 9603209
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effects of cyclic AMP and analogues on neurogenic transmission in the rat tail artery.
    Ouedraogo S; Stoclet JC; Bucher B
    Br J Pharmacol; 1994 Feb; 111(2):625-31. PubMed ID: 8004406
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Beta-adrenergic modulation of glial inwardly rectifying potassium channels.
    Roy ML; Sontheimer H
    J Neurochem; 1995 Apr; 64(4):1576-84. PubMed ID: 7891085
    [TBL] [Abstract][Full Text] [Related]  

  • 31. beta-adrenergic receptor-mediated presynaptic facilitation of inhibitory GABAergic transmission at cerebellar interneuron-Purkinje cell synapses.
    Saitow F; Satake S; Yamada J; Konishi S
    J Neurophysiol; 2000 Oct; 84(4):2016-25. PubMed ID: 11024094
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Cyclic AMP mediates a presynaptic form of LTP at cerebellar parallel fiber synapses.
    Salin PA; Malenka RC; Nicoll RA
    Neuron; 1996 Apr; 16(4):797-803. PubMed ID: 8607997
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Regulation of the cAMP-elevating effects of isoproterenol and forskolin in cardiac myocytes by treatments that cause increases in cAMP.
    Cui H; Green RD
    Biochem Biophys Res Commun; 2003 Jul; 307(1):119-26. PubMed ID: 12849990
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Protein kinases induce isoproterenol desensitization of beta-adrenoceptor-coupled adenylate cyclase system: significance of receptor occupancy.
    Yamashita A; Kurokawa T; Dan'ura T; Yanagiuchi H; Ishibashi S
    Eur J Pharmacol; 1987 Nov; 143(1):19-26. PubMed ID: 2826185
    [TBL] [Abstract][Full Text] [Related]  

  • 35. cAMP-mediated beta-adrenergic signaling negatively regulates Gq-coupled receptor-mediated fetal gene response in cardiomyocytes.
    Patrizio M; Vago V; Musumeci M; Fecchi K; Sposi NM; Mattei E; Catalano L; Stati T; Marano G
    J Mol Cell Cardiol; 2008 Dec; 45(6):761-9. PubMed ID: 18851973
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Protein kinase A-dependent and -independent effects of isoproterenol in rat isolated mesenteric artery: interactions with levcromakalim.
    White R; Bottrill FE; Siau D; Hiley CR
    J Pharmacol Exp Ther; 2001 Sep; 298(3):917-24. PubMed ID: 11504785
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Potentiation of cyclic AMP-mediated vasorelaxation by phenylephrine in pulmonary arteries of the rat.
    Priest RM; Hucks D; Ward JP
    Br J Pharmacol; 1999 May; 127(1):291-9. PubMed ID: 10369485
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Differential role of nitric oxide in long-term potentiation in the medial and lateral amygdala.
    Abe K; Watanabe Y; Saito H
    Eur J Pharmacol; 1996 Feb; 297(1-2):43-6. PubMed ID: 8851164
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Beta-adrenoceptor-mediated inhibition of alpha 1-adrenoceptor-mediated and field stimulation-induced contractile responses in the prostate of the guinea pig.
    Haynes JM; Hill SJ
    Br J Pharmacol; 1997 Nov; 122(6):1067-74. PubMed ID: 9401771
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Cyclic nucleotide-induced bidirectional long-term synaptic plasticity in Drosophila mushroom body.
    Yamada D; Davidson AM; Hige T
    J Physiol; 2024 May; 602(9):2019-2045. PubMed ID: 38488688
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.