These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 8685257)

  • 1. Time-domain reflectometry studies on Halobacterium halobium and Halobacterium marismortui.
    Bone S; Ginzburg BZ; Morgan H; Wilson G; Zaba B
    Phys Med Biol; 1996 Jan; 41(1):45-54. PubMed ID: 8685257
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Passive electrical properties of Halobacterium species. I. Low-frequency range.
    Ginzburg M; Lepkipfer B; Porath A; Ginzburg BZ
    Biophys Struct Mech; 1978 Jul; 4(3):237-49. PubMed ID: 687774
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Buffering capacity and membrane H+ conductance of Halobacterium halobium.
    Rius N; Lorén JG
    Microbiologia; 1996 Sep; 12(3):405-10. PubMed ID: 8897420
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Light-dependent cation gradients and electrical potential in Halobacterium halobium cell envelope vesicles.
    Lanyi JK; MacDonald RE
    Fed Proc; 1977 May; 36(6):1824-7. PubMed ID: 15877
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nucleotide sequence of the genes encoding the L3, L4, and L23 equivalent ribosomal proteins from the archaebacterium Halobacterium halobium.
    Yuki Y; Kanechika R; Itoh T
    Biochim Biophys Acta; 1993 Nov; 1216(2):335-8. PubMed ID: 8241282
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dielectric properties of yeast cells as simulated by the two-shell model.
    Raicu V; Raicu G; Turcu G
    Biochim Biophys Acta; 1996 Jun; 1274(3):143-8. PubMed ID: 8664306
    [TBL] [Abstract][Full Text] [Related]  

  • 7. THE PERIPHERAL STRUCTURES OF GRAM-NEGATIVE BACTERIA.IV. THE CATION-SENSITIVE DISSOLUTION OF THE CELL MEMBRANE OF THE HALOPHILIC BACTERIUM, HALOBACTERIUM HALOBIUM.
    BROWN AD
    Biochim Biophys Acta; 1963 Nov; 75():425-35. PubMed ID: 14104952
    [No Abstract]   [Full Text] [Related]  

  • 8. Existence of electrogenic hydrogen ion/sodium ion antiport in Halobacterium halobium cell envelope vesicles.
    Lanyi JK; MacDonald RE
    Biochemistry; 1976 Oct; 15(21):4608-14. PubMed ID: 9978
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Passive electrical properties of the membrane and cytoplasm of cultured rat basophil leukemia cells. I. Dielectric behavior of cell suspensions in 0.01-500 MHz and its simulation with a single-shell model.
    Irimajiri A; Asami K; Ichinowatari T; Kinoshita Y
    Biochim Biophys Acta; 1987 Jan; 896(2):203-13. PubMed ID: 3801468
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Coupling between the bacteriorhodopsin photocycle and the protonmotive force in Halobacterium halobium cell envelope vesicles. III. Time-resolved increase in the transmembrane electric potential and modeling of the associated ion fluxes.
    Helgerson SL; Mathew MK; Bivin DB; Wolber PK; Heinz E; Stoeckenius W
    Biophys J; 1985 Nov; 48(5):709-19. PubMed ID: 4074833
    [TBL] [Abstract][Full Text] [Related]  

  • 11. DCCD-sensitive, Na+-dependent H+-influx process coupled to membrane potential formation in membrane vesicles of Halobacterium halobium.
    Murakami N; Konishi T
    J Biochem; 1985 Oct; 98(4):897-907. PubMed ID: 2416740
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The extremely halophilic archaeon Halobacterium salinarum R1 responds to potassium limitation by expression of the K+-transporting KdpFABC P-type ATPase and by a decrease in intracellular K+.
    Strahl H; Greie JC
    Extremophiles; 2008 Nov; 12(6):741-52. PubMed ID: 18633573
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Proposal of a new halobacterial genus Natrinema gen. nov., with two species Natrinema pellirubrum nom. nov. and Natrinema pallidum nom. nov.
    McGenity TJ; Gemmell RT; Grant WD
    Int J Syst Bacteriol; 1998 Oct; 48 Pt 4():1187-96. PubMed ID: 9828420
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Relationship between proton motive force and potassium ion transport in Halobacterium halobium envelope vesicles.
    Lanyi JK; Helgerson SL; Silverman MP
    Arch Biochem Biophys; 1979 Apr; 193(2):329-39. PubMed ID: 464600
    [No Abstract]   [Full Text] [Related]  

  • 15. Dielectric relaxation study of glycine and valine in water mixture using picosecond time domain reflectometry.
    Lokhande MP; Mazumdar S; Mehrotra SC
    Indian J Biochem Biophys; 1997 Aug; 34(4):385-90. PubMed ID: 9491649
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Light induced membrane potential changes in Halobacterium halobium observed with high time resolution by resonance Raman spectroscopy.
    Szalontai B
    Biochem Biophys Res Commun; 1981 Jun; 100(3):1126-30. PubMed ID: 7271795
    [No Abstract]   [Full Text] [Related]  

  • 17. Two photocycles in halobacterium halobium that lacks bacteriorhodopsin.
    Tsuda M; Hazemoto N; Kondo M; Kamo N; Kobatake Y; Terayama Y
    Biochem Biophys Res Commun; 1982 Oct; 108(3):970-6. PubMed ID: 7181896
    [No Abstract]   [Full Text] [Related]  

  • 18. The essential role of specific Halobacterium halobium polar lipids in 2D-array formation of bacteriorhodopsin.
    Sternberg B; L'Hostis C; Whiteway CA; Watts A
    Biochim Biophys Acta; 1992 Jul; 1108(1):21-30. PubMed ID: 1643078
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Isolation and characterization of unsaturated fatty acids during bacteriorhodopsin preparation from Halobacterium halobium.
    Li D; Chen J
    Lett Appl Microbiol; 2007 Sep; 45(3):258-61. PubMed ID: 17718836
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electro-optical measurements on aqueous suspension of purple membrane from Halobacterium halobium.
    Barabás K; Dér A; Dancsházy Z; Ormos P; Keszthelyi L; Marden M
    Biophys J; 1983 Jul; 43(1):5-11. PubMed ID: 6882862
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.