These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 8686877)

  • 1. Dynamics of acrylodan-labeled bovine and human serum albumin entrapped in a sol-gel-derived biogel.
    Jordan JD; Dunbar RA; Bright FV
    Anal Chem; 1995 Jul; 67(14):2436-43. PubMed ID: 8686877
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dynamics of acrylodan-labeled bovine and human serum albumin sequestered within aerosol-OT reverse micelles.
    Lundgren JS; Heitz MP; Bright FV
    Anal Chem; 1995 Oct; 67(20):3775-81. PubMed ID: 8644923
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dynamics surrounding Cys-34 in native, chemically denatured, and silica-adsorbed bovine serum albumin.
    Wang R; Sun S; Bekos EJ; Bright FV
    Anal Chem; 1995 Jan; 67(1):149-59. PubMed ID: 7864387
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Accessibility of the fluorescent reporter group in native, silica-adsorbed, and covalently attached acrylodan-labeled serum albumins.
    Ingersoll CM; Jordan JD; Bright FV
    Anal Chem; 1996 Sep; 68(18):3194-8. PubMed ID: 8797379
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A dynamical investigation of acrylodan-labeled mutant phosphate binding protein.
    Lundgren JS; Salins LL; Kaneva I; Daunert S
    Anal Chem; 1999 Feb; 71(3):589-95. PubMed ID: 9989379
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Unfolding of acrylodan-labeled human serum albumin probed by steady-state and time-resolved fluorescence methods.
    Flora K; Brennan JD; Baker GA; Doody MA; Bright FV
    Biophys J; 1998 Aug; 75(2):1084-96. PubMed ID: 9675210
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Probing the cysteine 34 residue in human serum albumin using fluorescence techniques.
    Narazaki R; Maruyama T; Otagiri M
    Biochim Biophys Acta; 1997 Apr; 1338(2):275-81. PubMed ID: 9128146
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interaction of acrylodan with human serum albumin. A fluorescence spectroscopic study.
    Moreno F; Cortijo M; González-Jiménez J
    Photochem Photobiol; 1999 Nov; 70(5):695-700. PubMed ID: 10568165
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Urea-induced denaturation of human serum albumin labeled with acrylodan.
    González-Jiménez J; Cortijo M
    J Protein Chem; 2002 Feb; 21(2):75-9. PubMed ID: 11934277
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phase-fluorometry study on dielectric relaxation of acrylodan-labeled human serum albumin.
    Buzády A; Erostyák J; Somogyi B
    Biophys Chem; 2001 Dec; 94(1-2):75-85. PubMed ID: 11744192
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of N-B transition on the microenvironment surrounding 34Cys in human serum albumin.
    Narazaki R; Maruyama T; Otagiri M
    Biol Pharm Bull; 1997 Apr; 20(4):452-4. PubMed ID: 9145230
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Insight into the activation mechanism of Bordetella pertussis adenylate cyclase by calmodulin using fluorescence spectroscopy.
    Gallay J; Vincent M; Li de la Sierra IM; Munier-Lehmann H; Renouard M; Sakamoto H; Bârzu O; Gilles AM
    Eur J Biochem; 2004 Feb; 271(4):821-33. PubMed ID: 14764099
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Environment sensitive fluorescent analogue of biologically active oxazoles differentially recognizes human serum albumin and bovine serum albumin: Photophysical and molecular modeling studies.
    Maiti J; Biswas S; Chaudhuri A; Chakraborty S; Chakraborty S; Das R
    Spectrochim Acta A Mol Biomol Spectrosc; 2017 Mar; 175():191-199. PubMed ID: 28039847
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A fluorescent derivative of the oligomycin-sensitivity conferring protein (acrylodan-OSCP). Evidence for polarity changes in the environment of CYS118 of OSCP upon binding to mitochondrial F1.
    Dupuis A; Duszynski J; Vignais PV
    Biochem Biophys Res Commun; 1987 Jan; 142(1):31-7. PubMed ID: 2880585
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Analysis of log-normal components of fluorescence spectra of prodan and acrylodan bound to proteins].
    Emel'ianenko VI; Reshetniak IaK; Andreev OA; Burshteĭn EA
    Biofizika; 2000; 45(2):207-19. PubMed ID: 10776530
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Acrylodan can label amino as well as sulfhydryl groups: results with low-density lipoprotein, lipoprotein[a], and lipid-free proteins.
    Mims MP; Sturgis CB; Sparrow JT; Morrisett JD
    Biochemistry; 1993 Sep; 32(35):9215-20. PubMed ID: 8369288
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fluorescence spectroscopic study of serum albumin-bromadiolone interaction: fluorimetric determination of bromadiolone.
    Deepa S; Mishra AK
    J Pharm Biomed Anal; 2005 Jul; 38(3):556-63. PubMed ID: 15925260
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biosensor for the nonspecific determination of ionic surfactants.
    Lundgren JS; Bright FV
    Anal Chem; 1996 Oct; 68(19):3377-81. PubMed ID: 21619274
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Facile, sensitive and selective fluorescence turn-on detection of HSA/BSA in aqueous solution utilizing 2,4-dihydroxyl-3-iodo salicylaldehyde azine.
    Chen XT; Xiang Y; Tong AJ
    Talanta; 2010 Mar; 80(5):1952-8. PubMed ID: 20152438
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Site-specific chemical modification of interleukin-1 beta by acrylodan at cysteine 8 and lysine 103.
    Yem AW; Epps DE; Mathews WR; Guido DM; Richard KA; Staite ND; Deibel MR
    J Biol Chem; 1992 Feb; 267(5):3122-8. PubMed ID: 1531337
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.