BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 8687454)

  • 1. Long time-scale probing of the protein globular core using hydrogen-exchange and room temperature phosphorescence.
    Schlyer BD; Steel DG; Gafni A
    Biochem Biophys Res Commun; 1996 Jun; 223(3):670-4. PubMed ID: 8687454
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hydrogen exchange at the core of Escherichia coli alkaline phosphatase studied by room-temperature tryptophan phosphorescence.
    Fischer CJ; Schauerte JA; Wisser KC; Gafni A; Steel DG
    Biochemistry; 2000 Feb; 39(6):1455-61. PubMed ID: 10684627
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phosphorescence of alkaline phosphatase of E. coli in vitro and in situ.
    Horie T; Vanderkooi JM
    Biochim Biophys Acta; 1981 Sep; 670(2):294-7. PubMed ID: 7028128
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Room temperature phosphorescence study of phosphate binding in Escherichia coli alkaline phosphatase.
    Sun L; Kantrowitz ER; Galley WC
    Eur J Biochem; 1997 Apr; 245(1):32-9. PubMed ID: 9128721
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Detection of intermediate protein conformations by room temperature tryptophan phosphorescence spectroscopy during denaturation of Escherichia coli alkaline phosphatase.
    Mersol JV; Steel DG; Gafni A
    Biophys Chem; 1993 Dec; 48(2):281-91. PubMed ID: 8298060
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Differences in the pathways for unfolding and hydrogen exchange among mutants of Escherichia coli alkaline phosphatase.
    Fischer CJ; Schauerte JA; Wisser KC; Steel DG; Gafni A
    Biochim Biophys Acta; 2001 Feb; 1545(1-2):96-103. PubMed ID: 11342035
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Time-resolved room temperature protein phosphorescence: nonexponential decay from single emitting tryptophans.
    Schlyer BD; Schauerte JA; Steel DG; Gafni A
    Biophys J; 1994 Sep; 67(3):1192-202. PubMed ID: 7811933
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Room temperature phosphorescence and the dynamic aspects of protein structure.
    Saviotti ML; Galley WC
    Proc Natl Acad Sci U S A; 1974 Oct; 71(10):4154-8. PubMed ID: 4610571
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phosphorescence reveals a continued slow annealing of the protein core following reactivation of Escherichia coli alkaline phosphatase.
    Subramaniam V; Bergenhem NC; Gafni A; Steel DG
    Biochemistry; 1995 Jan; 34(4):1133-6. PubMed ID: 7827062
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Direct kinetic evidence for triplet state energy transfer from Escherichia coli alkaline phosphatase tryptophan 109 to bound terbium.
    Schlyer BD; Steel DG; Gafni A
    J Biol Chem; 1995 Sep; 270(39):22890-4. PubMed ID: 7559424
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of the tryptophan residues of Escherechia coli alkaline phosphatase by phosphorescence and optically detected magnetic resonance spectroscopy.
    Ghosh S; Misra A; Ozarowski A; Stuart C; Maki AH
    Biochemistry; 2001 Dec; 40(49):15024-30. PubMed ID: 11732924
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Effect of temperature on intramolecular dynamics and conformational state of bacterial alkaline phosphatase].
    Mazhul' VM; Kananovich SZh
    Biofizika; 2006; 51(3):418-23. PubMed ID: 16808339
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pressure effects on the structure of oligomeric proteins prior to subunit dissociation.
    Cioni P; Strambini GB
    J Mol Biol; 1996 Nov; 263(5):789-99. PubMed ID: 8947576
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of lens alpha-crystallin tryptophan microenvironments by room temperature phosphorescence spectroscopy.
    Berger JW; Vanderkooi JM
    Biochemistry; 1989 Jun; 28(13):5501-8. PubMed ID: 2775720
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Study on Escherichia coli alkaline phosphatase conformation by phosphorimetry in the presence of denaturant.
    Zhang HR; Guo SY; Li L; Cai MY
    Spectrochim Acta A Mol Biomol Spectrosc; 2003 Nov; 59(13):3185-91. PubMed ID: 14583294
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of tryptophan environments in glutamate dehydrogenases from temperature-dependent phosphorescence.
    Strambini GB; Cioni P; Felicioli RA
    Biochemistry; 1987 Aug; 26(16):4968-75. PubMed ID: 3663638
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Time-resolved circularly polarized protein phosphorescence.
    Schauerte JA; Steel DG; Gafni A
    Proc Natl Acad Sci U S A; 1992 Nov; 89(21):10154-8. PubMed ID: 1438204
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of heavy water on protein flexibility.
    Cioni P; Strambini GB
    Biophys J; 2002 Jun; 82(6):3246-53. PubMed ID: 12023248
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quenching of tryptophan phosphorescence in Escherichia coli alkaline phosphatase by long-range transfer mechanisms to external agents in the rapid-diffusion limit.
    Mersol JV; Steel DG; Gafni A
    Biochemistry; 1991 Jan; 30(3):668-75. PubMed ID: 1846302
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tryptophan luminescence as a probe of enzyme conformation along the O-acetylserine sulfhydrylase reaction pathway.
    Strambini GB; Cioni P; Cook PF
    Biochemistry; 1996 Jun; 35(25):8392-400. PubMed ID: 8679597
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.