These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
118 related articles for article (PubMed ID: 8687499)
1. A noncovalent binding-translocation mechanism for site-specific CC-1065-DNA recognition. Gunz D; Naegeli H Biochem Pharmacol; 1996 Aug; 52(3):447-53. PubMed ID: 8687499 [TBL] [Abstract][Full Text] [Related]
2. Molecular basis for sequence selective DNA alkylation by (+)- and ent-(-)-CC-1065 and related agents: alkylation site models that accommodate the offset AT-rich adenine N3 alkylation selectivity. Boger DL; Johnson DS; Yun W; Tarby CM Bioorg Med Chem; 1994 Feb; 2(2):115-35. PubMed ID: 7922122 [TBL] [Abstract][Full Text] [Related]
3. CC-1065 CBI analogs: an example of enhancement of DNA alkylation efficiency through introduction of stabilizing electrostatic interactions. Boger DL; Yun W; Han N; Johnson DS Bioorg Med Chem; 1995 Jun; 3(6):611-21. PubMed ID: 7582940 [TBL] [Abstract][Full Text] [Related]
4. Evaluation of functional analogs of CC-1065 and the duocarmycins incorporating the cross-linking 9a-chloromethyl-1,2,9,9a-tetrahydrocyclopropa[c]benz[e]indol-4-on e (C2BI) alkylation subunit. Boger DL; Johnson DS; Palanki MS; Kitos PA; Chang J; Dowell P Bioorg Med Chem; 1993 Jul; 1(1):27-38. PubMed ID: 8081835 [TBL] [Abstract][Full Text] [Related]
5. Demonstration of a pronounced effect of noncovalent binding selectivity on the (+)-CC-1065 DNA alkylation and identification of the pharmacophore of the alkylation subunit. Boger DL; Zarrinmayeh H; Munk SA; Kitos PA; Suntornwat O Proc Natl Acad Sci U S A; 1991 Feb; 88(4):1431-5. PubMed ID: 1847523 [TBL] [Abstract][Full Text] [Related]
6. Demonstration and definition of the noncovalent binding selectivity of agents related to CC-1065 by an affinity cleavage agent: noncovalent binding coincidental with alkylation. Boger DL; Zhou J; Cai H Bioorg Med Chem; 1996 Jun; 4(6):859-67. PubMed ID: 8818235 [TBL] [Abstract][Full Text] [Related]
7. Evidence for a common molecular basis for sequence recognition of N3-guanine and N3-adenine DNA adducts involving the covalent bonding reaction of (+)-CC-1065. Park HJ Arch Pharm Res; 2002 Feb; 25(1):11-24. PubMed ID: 11885687 [TBL] [Abstract][Full Text] [Related]
8. Inhibition of T4 DNA ligase activity by (+)-CC-1065: demonstration of the importance of the stiffening and winding effects of (+)-CC-1065 on DNA. Sun D; Hurley LH Anticancer Drug Des; 1992 Feb; 7(1):15-36. PubMed ID: 1543525 [TBL] [Abstract][Full Text] [Related]
9. Calf thymus DNA binding/bonding properties of CC-1065 and analogs as related to their biological activities and toxicities. Krueger WC; Prairie MD Chem Biol Interact; 1992 Mar; 82(1):31-46. PubMed ID: 1312395 [TBL] [Abstract][Full Text] [Related]
10. Molecular basis for sequence-specific DNA alkylation by CC-1065. Hurley LH; Lee CS; McGovren JP; Warpehoski MA; Mitchell MA; Kelly RC; Aristoff PA Biochemistry; 1988 May; 27(10):3886-92. PubMed ID: 3408734 [TBL] [Abstract][Full Text] [Related]
11. Construction and characterization of a site-directed CC-1065-N3-adenine adduct within a 117 base pair DNA restriction fragment. Needham-VanDevanter DR; Hurley LH Biochemistry; 1986 Dec; 25(26):8430-6. PubMed ID: 3030397 [TBL] [Abstract][Full Text] [Related]
12. Determination of the structural features of (+)-CC-1065 that are responsible for bending and winding of DNA. Lee CS; Sun D; Kizu R; Hurley LH Chem Res Toxicol; 1991; 4(2):203-13. PubMed ID: 1782349 [TBL] [Abstract][Full Text] [Related]
13. (+)-CC-1065 as a structural probe of Mu transposase-induced bending of DNA: overcoming limitations of hydroxyl-radical footprinting. Ding ZM; Harshey RM; Hurley LH Nucleic Acids Res; 1993 Sep; 21(18):4281-7. PubMed ID: 8414983 [TBL] [Abstract][Full Text] [Related]
14. (+)-CC-1065 as a probe for intrinsic and protein-induced bending of DNA. Hurley LH; Sun D J Mol Recognit; 1994 Jun; 7(2):123-32. PubMed ID: 7826672 [TBL] [Abstract][Full Text] [Related]
15. Synthesis and evaluation of 1,2,8, 8a-Tetrahydrocyclopropa[c]pyrrolo[3,2-e]indol-4(5H)-one, the parent alkylation subunit of CC-1065 and the duocarmycins: impact of the alkylation subunit substituents and its implications for DNA alkylation catalysis. Boger DL; Santillán A; Searcey M; Brunette SR; Wolkenberg SE; Hedrick MP; Jin Q J Org Chem; 2000 Jun; 65(13):4101-11. PubMed ID: 10866627 [TBL] [Abstract][Full Text] [Related]
16. An NMR study of the covalent and noncovalent interactions of CC-1065 and DNA. Scahill TA; Jensen RM; Swenson DH; Hatzenbuhler NT; Petzold G; Wierenga W; Brahme ND Biochemistry; 1990 Mar; 29(11):2852-60. PubMed ID: 2346749 [TBL] [Abstract][Full Text] [Related]
17. Reversibility of the covalent reaction of CC-1065 and analogues with DNA. Warpehoski MA; Harper DE; Mitchell MA; Monroe TJ Biochemistry; 1992 Mar; 31(9):2502-8. PubMed ID: 1547233 [TBL] [Abstract][Full Text] [Related]
18. The DNA phosphate backbone is not involved in catalysis of the duocarmycin and CC-1065 DNA alkylation reaction. Ambroise Y; Boger DL Bioorg Med Chem Lett; 2002 Feb; 12(3):303-6. PubMed ID: 11814783 [TBL] [Abstract][Full Text] [Related]
19. Synthesis, chemical properties, and biological evaluation of CC-1065 and duocarmycin analogues incorporating the 5-methoxycarbonyl-1,2,9,9a-tetrahydrocyclopropa. Boger DL; Hughes TV; Hedrick MP J Org Chem; 2001 Apr; 66(7):2207-16. PubMed ID: 11281757 [TBL] [Abstract][Full Text] [Related]
20. DNA sequence recognition by the antitumor antibiotic CC-1065 and analogs of CC-1065. Krueger WC; Hatzenbuhler NT; Prairie MD; Shea MH Chem Biol Interact; 1991; 79(3):265-86. PubMed ID: 1913973 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]