These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 8687980)

  • 1. Reduction in dynamic indices of cancellous bone formation in rat tail vertebrae after caudal neurectomy.
    Chow JW; Jagger CJ; Chambers TJ
    Calcif Tissue Int; 1996 Aug; 59(2):117-20. PubMed ID: 8687980
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stimulation of bone formation by dynamic mechanical loading of rat caudal vertebrae is not suppressed by 3-amino-1-hydroxypropylidene-1-bisphosphonate (AHPrBP).
    Jagger CJ; Chambers TJ; Chow JW
    Bone; 1995 Mar; 16(3):309-13. PubMed ID: 7786634
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A rat osteoporotic spine model for the evaluation of bioresorbable bone cements.
    Wang ML; Massie J; Perry A; Garfin SR; Kim CW
    Spine J; 2007; 7(4):466-74. PubMed ID: 17630145
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of osteogenic response to mechanical stimulation in cancellous bone of rat caudal vertebrae.
    Chow JW; Jagger CJ; Chambers TJ
    Am J Physiol; 1993 Aug; 265(2 Pt 1):E340-7. PubMed ID: 8368304
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanically induced bone formation is not sensitive to local osteocyte density in rat vertebral cancellous bone.
    Cresswell EN; Nguyen TM; Horsfield MW; Alepuz AJ; Metzger TA; Niebur GL; Hernandez CJ
    J Orthop Res; 2018 Feb; 36(2):672-681. PubMed ID: 28513889
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Static versus dynamic loading in the mechanical modulation of vertebral growth.
    Akyuz E; Braun JT; Brown NA; Bachus KN
    Spine (Phila Pa 1976); 2006 Dec; 31(25):E952-8. PubMed ID: 17139211
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Trabecular microfracture precedes cortical shell failure in the rat caudal vertebra under cyclic overloading.
    Kummari SR; Davis AJ; Vega LA; Ahn N; Cassinelli EH; Hernandez CJ
    Calcif Tissue Int; 2009 Aug; 85(2):127-33. PubMed ID: 19488669
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Induction of bone formation in rat tail vertebrae by mechanical loading.
    Chambers TJ; Evans M; Gardner TN; Turner-Smith A; Chow JW
    Bone Miner; 1993 Feb; 20(2):167-78. PubMed ID: 8453332
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lack of an effect of sodium zeolite A on rat tibia histomorphometry.
    Firling CE; Evans GL; Wakley GK; Sibonga J; Turner RT
    J Bone Miner Res; 1996 Feb; 11(2):254-63. PubMed ID: 8822350
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Disuse rescues the age-impaired adaptive response to external loading in mice.
    Meakin LB; Delisser PJ; Galea GL; Lanyon LE; Price JS
    Osteoporos Int; 2015 Nov; 26(11):2703-8. PubMed ID: 25920749
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mouse tail vertebrae adapt to cyclic mechanical loading by increasing bone formation rate and decreasing bone resorption rate as shown by time-lapsed in vivo imaging of dynamic bone morphometry.
    Lambers FM; Schulte FA; Kuhn G; Webster DJ; Müller R
    Bone; 2011 Dec; 49(6):1340-50. PubMed ID: 21964411
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanics and validation of an in vivo device to apply torsional loading to caudal vertebrae.
    Rizza R; Liu X
    J Biomech Eng; 2013 Aug; 135(8):81003. PubMed ID: 23722167
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Regional bone loss after orthotopic liver transplantation in inbred rats: the role of hepatic denervation.
    Kissler HJ; Erben RG; Hennig R; Gepp H; Stahr K; Hohenberger W; Schwille PO
    Calcif Tissue Int; 2002 Aug; 71(2):193-202. PubMed ID: 12200652
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spaceflight inhibits bone formation independent of corticosteroid status in growing rats.
    Zerath E; Holy X; Roberts SG; Andre C; Renault S; Hott M; Marie PJ
    J Bone Miner Res; 2000 Jul; 15(7):1310-20. PubMed ID: 10893679
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparative effects of intermittent administration of human parathyroid hormone (1-34) on cancellous and cortical bone loss in tail-suspended and sciatic neurectomized young rats.
    Moriyama I; Iwamoto J; Takeda T; Toyama Y
    J Orthop Sci; 2002; 7(3):379-85. PubMed ID: 12077665
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bone adaptation to cyclic loading in murine caudal vertebrae is maintained with age and directly correlated to the local micromechanical environment.
    Lambers FM; Kuhn G; Weigt C; Koch KM; Schulte FA; Müller R
    J Biomech; 2015 Apr; 48(6):1179-87. PubMed ID: 25543278
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Programmed administration of parathyroid hormone increases bone formation and reduces bone loss in hindlimb-unloaded ovariectomized rats.
    Turner RT; Evans GL; Cavolina JM; Halloran B; Morey-Holton E
    Endocrinology; 1998 Oct; 139(10):4086-91. PubMed ID: 9751486
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Physical exercise during remobilization restores a normal bone trabecular network after tail suspension-induced osteopenia in young rats.
    Bourrin S; Palle S; Genty C; Alexandre C
    J Bone Miner Res; 1995 May; 10(5):820-8. PubMed ID: 7639118
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An experimental study on the interface strength between titanium mesh cage and vertebra in reference to vertebral bone mineral density.
    Hasegawa K; Abe M; Washio T; Hara T
    Spine (Phila Pa 1976); 2001 Apr; 26(8):957-63. PubMed ID: 11317121
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanical loading of mouse caudal vertebrae increases trabecular and cortical bone mass-dependence on dose and genotype.
    Webster D; Wasserman E; Ehrbar M; Weber F; Bab I; Müller R
    Biomech Model Mechanobiol; 2010 Dec; 9(6):737-47. PubMed ID: 20352279
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.