BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

229 related articles for article (PubMed ID: 8688006)

  • 1. Surface Properties and Motility of Rhizobium and Azospirillum in Relation to Plant Root Attachment.
    De Troch P ; Vanderleyden J
    Microb Ecol; 1996 Jul; 32(2):149-69. PubMed ID: 8688006
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular mechanisms of attachment of Rhizobium bacteria to plant roots.
    Smit G; Swart S; Lugtenberg BJ; Kijne JW
    Mol Microbiol; 1992 Oct; 6(20):2897-903. PubMed ID: 1479881
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Azospirillum, a free-living nitrogen-fixing bacterium closely associated with grasses: genetic, biochemical and ecological aspects.
    Steenhoudt O; Vanderleyden J
    FEMS Microbiol Rev; 2000 Oct; 24(4):487-506. PubMed ID: 10978548
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Surface characteristics of Azospirillum brasilense in relation to cell aggregation and attachment to plant roots.
    Burdman S; Okon Y; Jurkevitch E
    Crit Rev Microbiol; 2000; 26(2):91-110. PubMed ID: 10890352
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Factors affecting the attachment of rhizospheric bacteria to bean and soybean roots.
    Albareda M; Dardanelli MS; Sousa C; Megías M; Temprano F; Rodríguez-Navarro DN
    FEMS Microbiol Lett; 2006 Jun; 259(1):67-73. PubMed ID: 16684104
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Attachment of bacteria to the roots of higher plants.
    Rodríguez-Navarro DN; Dardanelli MS; Ruíz-Saínz JE
    FEMS Microbiol Lett; 2007 Jul; 272(2):127-36. PubMed ID: 17521360
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanisms of bacterial attachment to roots.
    Wheatley RM; Poole PS
    FEMS Microbiol Rev; 2018 Jul; 42(4):448-461. PubMed ID: 29672765
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Extracellular polysaccharides are involved in the attachment of Azospirillum brasilense and Rhizobium leguminosarum to arbuscular mycorrhizal structures.
    Bianciotto V; Andreotti S; Balestrini R; Bonfante P; Perotto S
    Eur J Histochem; 2001; 45(1):39-49. PubMed ID: 11411863
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Osmoadaptation by rhizosphere bacteria.
    Miller KJ; Wood JM
    Annu Rev Microbiol; 1996; 50():101-36. PubMed ID: 8905077
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanism of plant growth promotion by rhizobacteria.
    Gupta A; Gopal M; Tilak KV
    Indian J Exp Biol; 2000 Sep; 38(9):856-62. PubMed ID: 12561941
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Metatranscriptomics and nitrogen fixation from the rhizoplane of maize plantlets inoculated with a group of PGPRs.
    Gómez-Godínez LJ; Fernandez-Valverde SL; Martinez Romero JC; Martínez-Romero E
    Syst Appl Microbiol; 2019 Jul; 42(4):517-525. PubMed ID: 31176475
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synthesis of phytohormones by plant-associated bacteria.
    Costacurta A; Vanderleyden J
    Crit Rev Microbiol; 1995; 21(1):1-18. PubMed ID: 7576148
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Pseudomonas secondary metabolite 2,4-diacetylphloroglucinol is a signal inducing rhizoplane expression of Azospirillum genes involved in plant-growth promotion.
    Combes-Meynet E; Pothier JF; Moënne-Loccoz Y; Prigent-Combaret C
    Mol Plant Microbe Interact; 2011 Feb; 24(2):271-84. PubMed ID: 21043573
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Which specificity in cooperation between phytostimulating rhizobacteria and plants?
    Drogue B; Doré H; Borland S; Wisniewski-Dyé F; Prigent-Combaret C
    Res Microbiol; 2012; 163(8):500-10. PubMed ID: 22989671
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Whole transcriptomic analysis of the plant-beneficial rhizobacterium Bacillus amyloliquefaciens SQR9 during enhanced biofilm formation regulated by maize root exudates.
    Zhang N; Yang D; Wang D; Miao Y; Shao J; Zhou X; Xu Z; Li Q; Feng H; Li S; Shen Q; Zhang R
    BMC Genomics; 2015 Sep; 16(1):685. PubMed ID: 26346121
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Extracellular polysaccharides and polysaccharide-containing biopolymers from Azospirillum species: properties and the possible role in interaction with plant roots.
    Skvortsov IM; Ignatov VV
    FEMS Microbiol Lett; 1998 Aug; 165(2):223-9. PubMed ID: 9742692
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Root Exudation by Aphid Leaf Infestation Recruits Root-Associated Paenibacillus spp. to Lead Plant Insect Susceptibility.
    Kim B; Song GC; Ryu CM
    J Microbiol Biotechnol; 2016 Mar; 26(3):549-57. PubMed ID: 26699743
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Key physiological properties contributing to rhizosphere adaptation and plant growth promotion abilities of Azospirillum brasilense.
    Fibach-Paldi S; Burdman S; Okon Y
    FEMS Microbiol Lett; 2012 Jan; 326(2):99-108. PubMed ID: 22092983
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genome wide profiling of Azospirillum lipoferum 4B gene expression during interaction with rice roots.
    Drogue B; Sanguin H; Borland S; Prigent-Combaret C; Wisniewski-Dyé F
    FEMS Microbiol Ecol; 2014 Feb; 87(2):543-55. PubMed ID: 24283406
    [TBL] [Abstract][Full Text] [Related]  

  • 20. dRNA-Seq Reveals Genomewide TSSs and Noncoding RNAs of Plant Beneficial Rhizobacterium Bacillus amyloliquefaciens FZB42.
    Fan B; Li L; Chao Y; Förstner K; Vogel J; Borriss R; Wu XQ
    PLoS One; 2015; 10(11):e0142002. PubMed ID: 26540162
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.