These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 8688164)

  • 1. Potentiometric biosensors for cholinesterase inhibitor analysis based on mediatorless bioelectrocatalysis.
    Ghindilis AL; Morzunova TG; Barmin AV; Kurochkin IN
    Biosens Bioelectron; 1996; 11(9):873-80. PubMed ID: 8688164
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Potentiometric electrodes for determining choline, butyrylcholine and cholinesterase inhibitors].
    Gindilis AL; Kurochkin IN
    Prikl Biokhim Mikrobiol; 1998; 34(3):326-31. PubMed ID: 9644713
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Glucose potentiometric electrodes based on mediatorless bioelectrocatalysis. A new approach.
    Ghindilis AL; Kurochkin IN
    Biosens Bioelectron; 1994; 9(4-5):353-9. PubMed ID: 8068230
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Current-driven ion fluxes of polymeric membrane ion-selective electrode for potentiometric biosensing.
    Ding J; Qin W
    J Am Chem Soc; 2009 Oct; 131(41):14640-1. PubMed ID: 19785410
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Determination of compounds with anticholinesterase activity in commercial drugs by a new enzyme sensor.
    Campanella L; Cocco R; Tomassetti M
    J Pharm Biomed Anal; 1992; 10(10-12):741-9. PubMed ID: 1298377
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of surface-active compounds on the response and sensitivity of cholinesterase biosensors for inhibitor determination.
    Evtugyn GA; Budnikov HC; Nikolskaya EB
    Analyst; 1996 Dec; 121(12):1911-5. PubMed ID: 9008408
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Disposable potentiometric sensors for monitoring cholinesterase activity.
    Khaled E; Hassan HN; Mohamed GG; Ragab FA; Seleim AE
    Talanta; 2010 Dec; 83(2):357-63. PubMed ID: 21111146
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Potentiometric butyrylcholine sensor for organophosphate pesticides.
    Imato T; Ishibashi N
    Biosens Bioelectron; 1995; 10(5):435-41. PubMed ID: 7786469
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Assay of serum cholinesterase activity by an amperometric biosensor based on a co-crosslinked choline oxidase/overoxidized polypyrrole bilayer.
    Ciriello R; Lo Magro S; Guerrieri A
    Analyst; 2018 Feb; 143(4):920-929. PubMed ID: 29363680
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Flow microcalorimetric study of butyrylcholinesterase kinetics and inhibition.
    Debord J; Verneuil B; Bollinger JC; Merle L; Dantoine T
    Anal Biochem; 2006 Jul; 354(2):299-304. PubMed ID: 16725100
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparative enzymatic studies using ion-selective electrodes. The case of cholinesterases.
    Cuartero M; Pérez S; García MS; García-Cánovas F; Ortuño JA
    Talanta; 2018 Apr; 180():316-322. PubMed ID: 29332816
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tubes for detection of cholinesterase inhibitors-Unique effects of Neusilin on the stability of butyrylcholinesterase-impregnated carriers.
    Zeman J; Vetchý D; Pavloková S; Franc A; Pitschmann V; Dominik M; Urbanová M; Šeděnková I
    Enzyme Microb Technol; 2019 Sep; 128():26-33. PubMed ID: 31186107
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modified carbon paste sensor for the potentiometric determination of neostigmine bromide in pharmaceutical formulations, human plasma and urine.
    Khorshid AF; Issa YM
    Biosens Bioelectron; 2014 Jan; 51():143-9. PubMed ID: 23948245
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Potentiometric sensing of butyrylcholinesterase based on in situ generation and detection of substrates.
    Ding J; Qin W
    Chem Commun (Camb); 2009 Feb; (8):971-3. PubMed ID: 19214333
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bi-enzyme sensor based on thick-film carbon electrode modified with electropolymerized tyramine.
    Suprun EV; Budnikov HC; Evtugyn GA; Brainina KhZ
    Bioelectrochemistry; 2004 Jun; 63(1-2):281-4. PubMed ID: 15110288
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reactive intermediates-induced potential responses of a polymeric membrane electrode for ultrasensitive potentiometric biosensing.
    Wang X; Qin W
    Chem Commun (Camb); 2012 Apr; 48(34):4073-5. PubMed ID: 22430082
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A new approach to the construction of potentiometric immunosensors.
    Ghindilis AL; Skorobogat'ko OV; Gavrilova VP; Yaropolov AI
    Biosens Bioelectron; 1992; 7(4):301-4. PubMed ID: 1622604
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The use of polyethyleneimine for fabrication of potentiometric cholinesterase biosensors.
    Reybier K; Zairi S; Jaffrezic-Renault N; Fahys B
    Talanta; 2002 Apr; 56(6):1015-20. PubMed ID: 18968581
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Progress of biosensors based on cholinesterase inhibition.
    Pohanka M; Musilek K; Kuca K
    Curr Med Chem; 2009; 16(14):1790-8. PubMed ID: 19442145
    [TBL] [Abstract][Full Text] [Related]  

  • 20. New approach for the potentiometric-enzymatic assay of reversible-competitive enzyme inhibitors. Application to acetylcholinesterase inhibitor galantamine and its determination in pharmaceuticals and human urine.
    Cuartero M; García MS; García-Cánovas F; Ortuño JÁ
    Talanta; 2013 Jun; 110():8-14. PubMed ID: 23618168
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.