These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 8688838)

  • 1. Melanin granule model for laser-induced thermal damage in the retina.
    Thompson CR; Gerstman BS; Jacques SL; Rogers ME
    Bull Math Biol; 1996 May; 58(3):513-53. PubMed ID: 8688838
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Melanin granule models for the processes of laser-induced thermal damage in pigmented retinal tissues. I. Modeling of laser-induced heating of melanosomes and selective thermal processes in retinal tissues.
    Pustovalov VK; Jean B
    Bull Math Biol; 2007 Jan; 69(1):245-63. PubMed ID: 16850352
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Laser induced bubble formation in the retina.
    Gerstman BS; Thompson CR; Jacques SL; Rogers ME
    Lasers Surg Med; 1996; 18(1):10-21. PubMed ID: 8850461
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ultrashort laser pulse bioeffects and safety.
    Rockwell BA; Hammer DX; Hopkins RA; Payne DJ; Toth CA; Roach WP; Druessel JJ; Kennedy PK; Amnotte RE; Eilert B; Phillips S; Noojin GD; Stolarski DJ; Cain C
    J Laser Appl; 1999 Feb; 11(1):42-4. PubMed ID: 10346063
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Theoretical investigations of laser thermal retinal injury.
    Birngruber R; Hillenkamp F; Gabel VP
    Health Phys; 1985 Jun; 48(6):781-96. PubMed ID: 3997529
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bubble formation as primary interaction mechanism in retinal laser exposure with 200-ns laser pulses.
    Roider J; El Hifnawi ES; Birngruber R
    Lasers Surg Med; 1998; 22(4):240-8. PubMed ID: 9603286
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Using a melanin granule lattice model to study the thermal effects of pulsed and scanning light irradiations through a measurement aperture.
    Kim DH
    J Biomed Opt; 2011 Dec; 16(12):125002. PubMed ID: 22191915
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phototoxicity to the retina: mechanisms of damage.
    Glickman RD
    Int J Toxicol; 2002; 21(6):473-90. PubMed ID: 12537644
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Retinal damage from intense visible light.
    Zheltov G; Glazkov V; Podol'tzef A; Linnik L; Privalov A
    Health Phys; 1989 May; 56(5):625-30. PubMed ID: 2651360
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multiple-pulse laser retinal damage thresholds.
    Griess GA; Blankenstein MF
    Am Ind Hyg Assoc J; 1981 Apr; 42(4):287-92. PubMed ID: 7234687
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Laser-induced retinal damage threshold for repetitive-pulse exposure to 100-μs pulses.
    Lund BJ; Lund DJ; Edsall PR; Gaines VD
    J Biomed Opt; 2014; 19(10):105006. PubMed ID: 25292166
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A simplified physical model of pressure wave dynamics and acoustic wave generation induced by laser absorption in the retina.
    Till SJ; Milsom PK; Rowlands G
    Bull Math Biol; 2004 Jul; 66(4):791-808. PubMed ID: 15210319
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ex vivo and computer model study on retinal thermal laser-induced damage in the visible wavelength range.
    Schulmeister K; Husinsky J; Seiser B; Edthofer F; Fekete B; Farmer L; Lund DJ
    J Biomed Opt; 2008; 13(5):054038. PubMed ID: 19021418
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dynamics of retinal photocoagulation and rupture.
    Sramek C; Paulus Y; Nomoto H; Huie P; Brown J; Palanker D
    J Biomed Opt; 2009; 14(3):034007. PubMed ID: 19566300
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Trends in retinal damage thresholds from 100-millisecond near-infrared laser radiation exposures: a study at 1,110, 1,130, 1,150, and 1,319 nm.
    Vincelette RL; Rockwell BA; Oliver JW; Kumru SS; Thomas RJ; Schuster KJ; Noojin GD; Shingledecker AD; Stolarski DJ; Welch AJ
    Lasers Surg Med; 2009 Jul; 41(5):382-90. PubMed ID: 19533764
    [TBL] [Abstract][Full Text] [Related]  

  • 16. RPE damage thresholds and mechanisms for laser exposure in the microsecond-to-millisecond time regimen.
    Schuele G; Rumohr M; Huettmann G; Brinkmann R
    Invest Ophthalmol Vis Sci; 2005 Feb; 46(2):714-9. PubMed ID: 15671304
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Thermal versus photochemical damage in the retina--thermal calculations for exposure limits.
    Birngruber R; Gabel VP
    Trans Ophthalmol Soc U K (1962); 1983; 103 ( Pt 4)():422-7. PubMed ID: 6600144
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Simulation of the temperature increase in human cadaver retina during direct illumination by 150-kHz femtosecond laser pulses.
    Sun H; Hosszufalusi N; Mikula ER; Juhasz T
    J Biomed Opt; 2011 Oct; 16(10):108001. PubMed ID: 22029369
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thermal tolerance of E. faecalis to pulsed heating in the millisecond range.
    Pirnat S; Lukac M; Ihan A
    Lasers Med Sci; 2011 Mar; 26(2):229-37. PubMed ID: 20878431
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spatially correlated microthermography maps threshold temperature in laser-induced damage.
    Denton ML; Noojin GD; Foltz MS; Clark CD; Estlack LE; Rockwell BA; Thomas RJ
    J Biomed Opt; 2011 Mar; 16(3):036003. PubMed ID: 21456867
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.