These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 8688838)

  • 21. Retinal damage thresholds from single-pulse laser exposures in the visible spectrum.
    Courant D; Court L; Abadie B; Brouillet B
    Health Phys; 1989 May; 56(5):637-42. PubMed ID: 2708052
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Computer model to investigate the effect of eye movements on retinal heating during long-duration fixation on a laser source.
    Lund BJ
    J Biomed Opt; 2004; 9(5):1093-102. PubMed ID: 15447030
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Retinal response of Macaca mulatta to picosecond laser pulses of varying energy and spot size.
    Roach WP; Cain CP; Narayan DG; Noojin GD; Boppart SA; Birngruber R; Fujimoto JG; Toth CA
    J Biomed Opt; 2004; 9(6):1288-96. PubMed ID: 15568950
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Monte Carlo model for studying the effects of melanin concentrations on retina light absorption.
    Guo Y; Yao G; Lei B; Tan J
    J Opt Soc Am A Opt Image Sci Vis; 2008 Feb; 25(2):304-11. PubMed ID: 18246163
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Microphotocoagulation: selective effects of repetitive short laser pulses.
    Roider J; Hillenkamp F; Flotte T; Birngruber R
    Proc Natl Acad Sci U S A; 1993 Sep; 90(18):8643-7. PubMed ID: 8378341
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Sub-50-fs laser retinal damage thresholds in primate eyes with group velocity dispersion, self-focusing and low-density plasmas.
    Cain CP; Thomas RJ; Noojin GD; Stolarski DJ; Kennedy PK; Buffington GD; Rockwell BA
    Graefes Arch Clin Exp Ophthalmol; 2005 Feb; 243(2):101-12. PubMed ID: 15241612
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Irradiation of rabbit retina with diode and Nd:YAG lasers.
    McHugh D; England C; van der Zypen E; Marshall J; Fankhauser F; Fankhauser-Kwasnieska S
    Br J Ophthalmol; 1995 Jul; 79(7):672-7. PubMed ID: 7662634
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Amount of Melanin Granules in Human Hair Defines the Absorption and Conversion to Heat of Light Energy in the Visible Spectrum.
    Roldan-Kalil J; Zueva L; Alves J; Tsytsarev V; Sanabria P; Inyushin M
    Photochem Photobiol; 2023; 99(4):1092-1096. PubMed ID: 36403200
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Influence of laser parameters on selective retinal treatment using single-phase heat transfer analyses.
    Banerjee RK; Zhu L; Gopalakrishnan P; Kazmierczak MJ
    Med Phys; 2007 May; 34(5):1828-41. PubMed ID: 17555264
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A new model for laser-induced thermal damage in the retina.
    Till SJ; Till J; Milsom PK; Rowlands G
    Bull Math Biol; 2003 Jul; 65(4):731-46. PubMed ID: 12875340
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Thresholds for retinal injury from multiple near-infrared ultrashort laser pulses.
    Cain CP; Toth CA; Noojin GD; Stolarski DJ; Thomas RJ; Rockwell BA
    Health Phys; 2002 Jun; 82(6):855-62. PubMed ID: 12046758
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Retinal injury thresholds for blue wavelength lasers.
    Lund DJ; Stuck BE; Edsall P
    Health Phys; 2006 May; 90(5):477-84. PubMed ID: 16607179
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Melanin granule models for pulsed laser induced retinal injury.
    Hansen WP; Fine S
    Appl Opt; 1968 Jan; 7(1):155-9. PubMed ID: 20062425
    [TBL] [Abstract][Full Text] [Related]  

  • 34. In vitro model that approximates retinal damage threshold trends.
    Denton ML; Foltz MS; Schuster KJ; Noojin GD; Estlack LE; Thomas RJ
    J Biomed Opt; 2008; 13(5):054014. PubMed ID: 19021394
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Retinal effects of ultrashort laser pulses in the rabbit eye.
    Toth CA; Cain CP; Stein CD; Noojin GD; Stolarski DJ; Zuclich JA; Roach WP
    Invest Ophthalmol Vis Sci; 1995 Aug; 36(9):1910-7. PubMed ID: 7635664
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Threshold for retinal damage associated with the use of high-power neodymium-YAG lasers in the vitreous.
    Bonner RF; Meyers SM; Gaasterland DE
    Am J Ophthalmol; 1983 Aug; 96(2):153-9. PubMed ID: 6881240
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Heat generation in laser irradiated tissue.
    Welch AJ; Pearce JA; Diller KR; Yoon G; Cheong WF
    J Biomech Eng; 1989 Feb; 111(1):62-8. PubMed ID: 2747235
    [TBL] [Abstract][Full Text] [Related]  

  • 38. In-vitro retinal model reveals a sharp transition between laser damage mechanisms.
    Denton ML; Clark CD; Foltz MS; Schuster KJ; Noojin GD; Estlack LE; Thomas RJ
    J Biomed Opt; 2010; 15(3):030512. PubMed ID: 20614995
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Damage threshold from large retinal spot size repetitive-pulse laser exposures.
    Lund BJ; Lund DJ; Edsall PR
    Health Phys; 2014 Oct; 107(4):292-9. PubMed ID: 25162419
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The effect of ocular aberrations on retinal laser damage thresholds in the human eye.
    Milsom PK; Till SJ; Rowlands G
    Health Phys; 2006 Jul; 91(1):20-8. PubMed ID: 16775476
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.