These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

72 related articles for article (PubMed ID: 8688935)

  • 1. [The adaptation of the microcirculatory bed of the major veins to the intermittent action of high-altitude hypoxia].
    Kramar NI; Monin VI
    Morfologiia; 1995; 108(2):39-40. PubMed ID: 8688935
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Effect of conditioning to altitude hypoxia on mesenteric microcirculation in rats].
    Shtykhno IuM; Titova IP
    Biull Eksp Biol Med; 1977 May; 83(5):528-30. PubMed ID: 884251
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Observation on the reactions of the albino rat in simulated altitude.
    Quatrini U; Benigno A; Orlando F
    Poumon Coeur; 1980; 36(6):361-5. PubMed ID: 7220419
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Effects of high altitude on the morphofunctional state of mast cells of the subcutaneous connective tissue during physical exercise].
    Frolenko VI; Zakharov GA
    Aviakosm Ekolog Med; 1995; 29(1):53-6. PubMed ID: 7663479
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Morphofunctional characteristics of the hemomicrocirculatory bed of the canine pericardium].
    Iuldashev IIu
    Arkh Anat Gistol Embriol; 1986 Jul; 91(7):43-8. PubMed ID: 2428334
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Research on the relationship between expression of VEGF and high altitude pulmonary edema].
    Yang X; Xie Y; Zhang D
    Zhonghua Yi Xue Za Zhi; 2000 Dec; 80(12):931-5. PubMed ID: 11236633
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Capillary filtration coefficient and the distensibility of the venous vessels of the small intestine in the process of high-altitude adaptation].
    Polenov SA; Cherniavskaia GV; Akhmedov KIu; Nurmatov AA; Bochkova VG
    Fiziol Zh SSSR Im I M Sechenova; 1983 Apr; 69(4):505-12. PubMed ID: 6223844
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Changes in the microcirculatory bed of the uterus and its regional lymph nodes during pregnancy].
    Borodin IuI; Ustiugov ED; Sklianova NA; Sklianov IuI
    Arkh Anat Gistol Embriol; 1987 Dec; 93(12):40-3. PubMed ID: 3447545
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Comparative assessment of the effect of adaptation to stress exposure and high altitude hypoxia on heart resistance to reperfusion injury after total ischemia].
    Meerson FZ; Malyshev IIu; Vovk VI
    Biull Eksp Biol Med; 1991 Jul; 112(7):18-20. PubMed ID: 1793839
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Regularities in the development of aseptic inflammation upon adaptation of the body to high-altitude hypoxia].
    Malyshev VV; Vasil'eva LS; Belogorov SB
    Biull Eksp Biol Med; 1994 Sep; 118(9):243-6. PubMed ID: 7819550
    [No Abstract]   [Full Text] [Related]  

  • 11. Resistance vessel remodeling and reparative angiogenesis in the microcirculatory bed of long-term denervated skeletal muscles.
    Dedkov EI; Kostrominova TY; Borisov AB; Carlson BM
    Microvasc Res; 2002 Jan; 63(1):96-114. PubMed ID: 11749077
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [The blood microcirculatory bed of the small intestine, liver and pancreas after resection of the stomach and small intestine].
    Khudaĭberdyev RI
    Arkh Anat Gistol Embriol; 1988 Sep; 95(9):44-9. PubMed ID: 3219072
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Intermittent high altitude hypoxia inhibits opening of mitochondrial permeability transition pores against reperfusion injury.
    Zhu WZ; Xie Y; Chen L; Yang HT; Zhou ZN
    J Mol Cell Cardiol; 2006 Jan; 40(1):96-106. PubMed ID: 16288778
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Comparative evaluation of the adaptive mechanisms of the microcirculatory bed during dehydration].
    Tikhomirov AN; Sokolova EA; Kapenova KK; Liubimtseva EA
    Arkh Anat Gistol Embriol; 1988 Sep; 95(9):39-44. PubMed ID: 3219071
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Changes in conditioned reflex activity during adaptation of the rat to pressure-chamber and high-altitude hypoxia].
    Aliev MA; Bekbolotova AK; Lemeshenko VA; Pelepets LA
    Zh Vyssh Nerv Deiat Im I P Pavlova; 1987; 37(1):142-9. PubMed ID: 3577404
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Compensatory-adaptive responses of the microcirculatory bed of rat mesentery in hypoxia].
    Ibragimov IuI
    Fiziol Zh SSSR Im I M Sechenova; 1978 Jan; 64(1):55-60. PubMed ID: 620859
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Prevention of heart failure by adapting the body to high-altitude hypoxia].
    Varosian MA; Kittnar OE
    Patol Fiziol Eksp Ter; 1991; (6):41-3. PubMed ID: 1818286
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Growth of cardiac muscle cells during rat adaptation to altitude hypoxia].
    Aref'eva AM; Durova SI; Meerson FZ; Brodskiĭ VIa
    Tsitologiia; 1982 Dec; 24(12):1435-9. PubMed ID: 6218671
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Adaptation to stress can enhance animal resistance to sublethal hypoxia to a greater extent than adaptation to hypoxia].
    Meerson FZ; Pozharov VP; Miniaĭlenko TD; Golubeva LIu
    Biull Eksp Biol Med; 1993 Dec; 116(12):574-7. PubMed ID: 8123804
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Functional and metabolic changes in the heart during the adaptation of the body to high altitude hypoxia].
    Varosian MA
    Kosm Biol Aviakosm Med; 1989; 23(5):68-70. PubMed ID: 2480474
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.