BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

286 related articles for article (PubMed ID: 8689402)

  • 1. Thermotolerance attenuates heat-induced increases in [Ca2+]i and HSP-72 synthesis but not heat-induced intracellular acidification in human A-431 cells.
    Kiang JG; Ding XZ; McClain DE
    J Investig Med; 1996 Feb; 44(2):53-63. PubMed ID: 8689402
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Increases in HSF1 translocation and synthesis in human epidermoid A-431 cells: role of protein kinase C and [Ca2+]i.
    Ding XZ; Smallridge RC; Galloway RJ; Kiang JG
    J Investig Med; 1996 Apr; 44(4):144-53. PubMed ID: 8689410
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of intracellular calcium pools and their desensitization in thermotolerant human A-431 cells.
    Kiang JG; Koenig ML
    J Investig Med; 1996 Aug; 44(6):352-61. PubMed ID: 8795298
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Overexpression of HSP-70 attenuates increases in [Ca2+]i and protects human epidermoid A-431 cells after chemical hypoxia.
    Kiang JG; Ding XZ; McClain DE
    Toxicol Appl Pharmacol; 1998 Apr; 149(2):185-94. PubMed ID: 9571987
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of calcium buffering on the synthesis of the 26-kDa heat-shock protein family.
    Evans DP; Corbin JR; Tomasovic SP
    Radiat Res; 1991 Sep; 127(3):261-8. PubMed ID: 1886981
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of cycloheximide or puromycin on induction of thermotolerance by heat in Chinese hamster ovary cells: dose fractionation at 45.5 degrees C1.
    Lee YJ; Dewey WC
    Cancer Res; 1987 Nov; 47(22):5960-6. PubMed ID: 3664499
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Low pH suppresses synthesis of heat-shock proteins and thermotolerance.
    Hang H; Fox MH
    Radiat Res; 1994 Oct; 140(1):24-30. PubMed ID: 7938451
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Changes in the localization of heat shock protein 72 correlated with development of thermotolerance in human esophageal cancer cell line.
    Nonaka T; Akimoto T; Mitsuhashi N; Tamaki Y; Yokota S; Nakano T
    Anticancer Res; 2003; 23(6C):4677-87. PubMed ID: 14981913
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cytoprotection and regulation of heat shock proteins induced by heat shock in human breast cancer T47-D cells: role of [Ca2+]i and protein kinases.
    Kiang JG; Gist ID; Tsokos GC
    FASEB J; 1998 Nov; 12(14):1571-9. PubMed ID: 9806766
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Differences in thermotolerance induced by heat or sodium arsenite: correlation between redistribution of a 26-kDa protein and development of protein synthesis-independent thermotolerance in CHO cells.
    Lee YJ; Kim DH; Hou ZZ; Corry PM
    Radiat Res; 1991 Sep; 127(3):325-34. PubMed ID: 1886989
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Induction of heat shock proteins in Chinese hamster ovary cells and development of thermotolerance by intermediate concentrations of puromycin.
    Lee YJ; Dewey WC
    J Cell Physiol; 1987 Jul; 132(1):1-11. PubMed ID: 3597546
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Alterations in specific and general protein synthesis after heat shock in heat-sensitive mutants of CHO cells and their wild-type counterparts.
    Harvey WF; Bedford JS; Li GC
    Radiat Res; 1990 Oct; 124(1 Suppl):S88-97. PubMed ID: 2236516
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Differences in thermotolerance induced by heat or sodium arsenite: cell killing and inhibition of protein synthesis.
    Lee YJ; Perlaky L; Dewey WC; Armour EP; Corry PM
    Radiat Res; 1990 Mar; 121(3):295-303. PubMed ID: 2179980
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Thermotolerance expression in mitotic CHO cells without increased translation of heat shock proteins.
    Borrelli MJ; Stafford DM; Karczewski LA; Rausch CM; Lee YJ; Corry PM
    J Cell Physiol; 1996 Dec; 169(3):420-8. PubMed ID: 8952691
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Heat-shock protein 40, a novel predictor of thermotolerance in murine cells.
    Kaneko R; Hattori H; Hayashi Y; Tohnai I; Ueda M; Ohtsuka K
    Radiat Res; 1995 Apr; 142(1):91-7. PubMed ID: 7899564
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dissociation of 68,000 Mr heat shock protein synthesis from thermotolerance expression in rat fibroblasts.
    Widelitz RB; Magun BE; Gerner EW
    Radiat Res; 1984 Aug; 99(2):433-7. PubMed ID: 6463215
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Acquisition of thermotolerance induced by heat and arsenite in HeLa S3 cells: multiple pathways to induce tolerance?
    Kampinga HH; Brunsting JF; Konings AW
    J Cell Physiol; 1992 Feb; 150(2):406-15. PubMed ID: 1370842
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lower heat shock factor activation and binding and faster rate of HSP-70A messenger RNA turnover in heat sensitive human leukemias.
    Mivechi NF; Ouyang H; Hahn GM
    Cancer Res; 1992 Dec; 52(24):6815-22. PubMed ID: 1458470
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Heat shock factor-1 protein in heat shock factor-1 gene-transfected human epidermoid A431 cells requires phosphorylation before inducing heat shock protein-70 production.
    Ding XZ; Tsokos GC; Kiang JG
    J Clin Invest; 1997 Jan; 99(1):136-43. PubMed ID: 9011567
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Altered synthesis of the 26-kDa heat stress protein family and thermotolerance in cell lines with elevated levels of calcium-binding proteins.
    Evans DP; Simonette RA; Rasmussen CD; Means AR; Tomasovic SP
    J Cell Physiol; 1990 Mar; 142(3):615-27. PubMed ID: 2312618
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.