These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 8690575)

  • 1. Comparison of direct alpha spectrometry and neutron activation analysis of aerosol filters for determination of workplace thorium air concentrations.
    Hötzl H; Riedmann W; Weinmüller K; Winkler R
    Health Phys; 1996 May; 70(5):651-5. PubMed ID: 8690575
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Exposures from thorium contained in thoriated tungsten welding electrodes.
    Jankovic JT; Underwood WS; Goodwin GM
    Am Ind Hyg Assoc J; 1999; 60(3):384-9. PubMed ID: 10386359
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Measurements of air concentrations of thorium during grinding and welding operations using thoriated tungsten electrodes.
    Crim EM; Bradley TD
    Health Phys; 1995 May; 68(5):719-22. PubMed ID: 7730071
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Intakes of thorium while using thoriated tungsten electrodes for TIG welding.
    Ludwig T; Schwass D; Seitz G; Siekmann H
    Health Phys; 1999 Oct; 77(4):462-9. PubMed ID: 10492354
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thorium-232 exposure during tungsten inert gas arc welding and electrode sharpening.
    Saito H; Hisanaga N; Okada Y; Hirai S; Arito H
    Ind Health; 2003 Jul; 41(3):273-8. PubMed ID: 12916759
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thorium in the workplace: results from a European-based measurement comparison project.
    Tyler DK; Woods MJ; Jerome SM; Harms AV
    Radiat Prot Dosimetry; 2001; 97(2):141-52. PubMed ID: 11843356
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thorium exposure during tungsten inert gas welding with thoriated tungsten electrodes.
    Gäfvert T; Pagels J; Holm E
    Radiat Prot Dosimetry; 2003; 103(4):349-57. PubMed ID: 12797558
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The EC Thematic Network on the Analysis of Thorium and its isotopes in Workplace Materials.
    Howe AM; Bernot C; Woods MJ
    Radiat Prot Dosimetry; 2001; 97(2):95-100. PubMed ID: 11843367
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Determination of thorium in environmental and workplace materials by ICP-MS.
    Holmes L; Pilvio R
    Appl Radiat Isot; 2000; 53(1-2):63-8. PubMed ID: 10879839
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Determination of 232Th by neutron activation analysis using isotope-related ki factors.
    Küppers G
    Radiat Prot Dosimetry; 2001; 97(2):123-5. PubMed ID: 11843352
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Measurement of relative concentration of iodine in air by alkali treated filter paper method (author's transl)].
    Fukuzaki N; Moriyama N; Sugai R; Oshina T
    Radioisotopes; 1979 Jun; 28(6):371-3. PubMed ID: 531260
    [No Abstract]   [Full Text] [Related]  

  • 12. Comparison of pressure drop and filtration efficiency of particulate respirators using welding fumes and sodium chloride.
    Cho HW; Yoon CS; Lee JH; Lee SJ; Viner A; Johnson EW
    Ann Occup Hyg; 2011 Jul; 55(6):666-80. PubMed ID: 21742627
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Current research activity in the measurement of thorium and the identification of future research needs.
    White MA; Howe AM; Rosen P; Holmes L
    Radiat Prot Dosimetry; 2001; 97(2):101-4. PubMed ID: 11843348
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Studies of aerosol distributions in a small laboratory containing a heated phantom.
    Parker RC; Bull RK; Stevens DC; Marshall M
    Ann Occup Hyg; 1990 Feb; 34(1):35-44. PubMed ID: 2327688
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Powered, air-purifying particulate respirator filter penetration by a DOP aerosol.
    Martin S; Moyer E; Jensen P
    J Occup Environ Hyg; 2006 Nov; 3(11):620-30. PubMed ID: 17086666
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Determination of metal dusts in aerosols using x-ray fluorescence. Comparison with other analytical methods].
    Pozzoli L; Massola A; Angeleri S
    Ann Ist Super Sanita; 1978; 14(3):437-9. PubMed ID: 755394
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Analytical aerosol-sorption charcoal filters for the air sampling of multicomponent chemical mixtures].
    Murav'eva SI; Borisov NB; Borisova LI; Makeeva LG; Gritsun EN
    Gig Tr Prof Zabol; 1981 Feb; (2):51. PubMed ID: 7203116
    [No Abstract]   [Full Text] [Related]  

  • 18. Assessment of airborne hazards in the thorium processing industry.
    Kotrappa P; Bhanti DP; Menon VB; Dhandayutham R; Gohel CO; Nambiar PP
    Am Ind Hyg Assoc J; 1976 Nov; 37(11):613-6. PubMed ID: 998494
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Performance evaluation of continuous air monitor (CAM) sampling heads.
    McFarland AR; Ortiz CA; Rodgers JC
    Health Phys; 1990 Mar; 58(3):275-81. PubMed ID: 2312293
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Portable XRF analysis of occupational air filter samples from different workplaces using different samplers: final results, summary and conclusions.
    Harper M; Pacolay B; Hintz P; Bartley DL; Slaven JE; Andrew ME
    J Environ Monit; 2007 Nov; 9(11):1263-70. PubMed ID: 17968454
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.