BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 8690845)

  • 1. Autonomic mediation of short-term cardiovascular oscillations after acute hemorrhage in conscious rats.
    Gonzalez Gonzalez J; Cordero Valeriano JJ; Feria Rodriguez M
    J Auton Nerv Syst; 1995 Oct; 55(1-2):123-30. PubMed ID: 8690845
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Contribution of humoral systems to the short-term variability of blood pressure after severe hemorrhage.
    Ponchon P; Elghozi JL
    Am J Physiol; 1997 Jul; 273(1 Pt 2):R58-69. PubMed ID: 9249533
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Power spectral analysis of short-term RR interval and arterial blood pressure oscillations in the lizard, Gallotia galloti: effects of sympathetic blockade.
    De Vera L; González J
    J Exp Zool; 1999 Feb; 283(2):113-20. PubMed ID: 9919685
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Nervous mechanisms of spontaneous oscillations of systolic blood pressure and heart rate].
    Elghozi JL; Japundzic N; Grichois ML; Zitoun P
    Arch Mal Coeur Vaiss; 1990 Jul; 83(8):1065-8. PubMed ID: 2124441
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of long-term angiotensin converting enzyme inhibition on cardiovascular variability in aging rats.
    Dias da Silva VJ; Montano N; Salgado HC; Fazan Júnior R
    Auton Neurosci; 2006 Jan; 124(1-2):49-55. PubMed ID: 16439186
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of low and high frequency ranges for heart rate variability and blood pressure variability analyses using pharmacological autonomic blockade with atropine and propranolol in swine.
    Poletto R; Janczak AM; Marchant-Forde RM; Marchant JN; Matthews DL; Dowell CA; Hogan DF; Freeman LJ; Lay DC
    Physiol Behav; 2011 May; 103(2):188-96. PubMed ID: 21281655
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of N omega-monomethyl-L-arginine on short-term RR interval and systolic blood pressure oscillations.
    Cordero JJ; González J; Feria M
    J Cardiovasc Pharmacol; 1994 Aug; 24(2):323-7. PubMed ID: 7526068
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Human autonomic responses to blood donation.
    Zöllei E; Paprika D; Makra P; Gingl Z; Vezendi K; Rudas L
    Auton Neurosci; 2004 Feb; 110(2):114-20. PubMed ID: 15046735
    [TBL] [Abstract][Full Text] [Related]  

  • 9. α-Adrenergic effects on low-frequency oscillations in blood pressure and R-R intervals during sympathetic activation.
    Kiviniemi AM; Frances MF; Tiinanen S; Craen R; Rachinsky M; Petrella RJ; Seppänen T; Huikuri HV; Tulppo MP; Shoemaker JK
    Exp Physiol; 2011 Aug; 96(8):718-35. PubMed ID: 21602293
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cardiovascular autonomic function in conscious rats: a novel approach to facilitate stationary conditions.
    Ramaekers D; Beckers F; Demeulemeester H; Aubert AE
    Ann Noninvasive Electrocardiol; 2002 Oct; 7(4):307-18. PubMed ID: 12431308
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cardiovascular autonomic regulation in preterm infants: the effect of atropine.
    Andriessen P; Janssen BJ; Berendsen RC; Oetomo SB; Wijn PF; Blanco CE
    Pediatr Res; 2004 Dec; 56(6):939-46. PubMed ID: 15470200
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Blood pressure modulation by central venous pressure and respiration. Buffering effects of the heart rate reflexes.
    Triedman JK; Saul JP
    Circulation; 1994 Jan; 89(1):169-79. PubMed ID: 8281644
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Hormonal contribution to short-term variability of blood pressure in a renovascular hypertension model].
    Ponchon P; Elghozi JL
    Arch Mal Coeur Vaiss; 1995 Aug; 88(8):1203-7. PubMed ID: 8572874
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Relationship between cortical electrical and cardiac autonomic activities in the awake lizard, Gallotia galloti.
    de Vera L; González J; Pereda E
    J Exp Zool; 2000 Jun; 287(1):21-8. PubMed ID: 10861546
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Low-frequency oscillations in R-R interval and blood pressure across the continuum of cardiovascular risk.
    Kiviniemi AM; Tiinanen S; Hautala AJ; Seppänen T; Norton KN; Frances MF; Nolan RP; Huikuri HV; Tulppo MP; Shoemaker JK
    Auton Neurosci; 2010 Dec; 158(1-2):92-9. PubMed ID: 20573550
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Autonomic nervous system and cardiovascular variability in rats: a spectral analysis approach.
    Cerutti C; Gustin MP; Paultre CZ; Lo M; Julien C; Vincent M; Sassard J
    Am J Physiol; 1991 Oct; 261(4 Pt 2):H1292-9. PubMed ID: 1833987
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of different stresses on cardiac autonomic control and cardiovascular coupling.
    Xie L; Liu B; Wang X; Mei M; Li M; Yu X; Zhang J
    J Appl Physiol (1985); 2017 Mar; 122(3):435-445. PubMed ID: 27979981
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Changes in autonomic activity and baroreflex sensitivity with the hypertension process and age in rats.
    Nagai R; Nagata S; Fukuya F; Higaki J; Rakugi H; Ogihara T
    Clin Exp Pharmacol Physiol; 2003; 30(5-6):419-25. PubMed ID: 12859436
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Insight into blood-pressure control in SHR via the response to acute hemorrhage: a spectral analysis approach.
    Oz O; Eliash S; Cohen S; Akselrod S
    J Auton Nerv Syst; 1995 Nov; 55(3):146-54. PubMed ID: 8801264
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Autonomic cardiovascular control in conscious mice.
    Just A; Faulhaber J; Ehmke H
    Am J Physiol Regul Integr Comp Physiol; 2000 Dec; 279(6):R2214-21. PubMed ID: 11080088
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.