These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 8690845)

  • 1. Autonomic mediation of short-term cardiovascular oscillations after acute hemorrhage in conscious rats.
    Gonzalez Gonzalez J; Cordero Valeriano JJ; Feria Rodriguez M
    J Auton Nerv Syst; 1995 Oct; 55(1-2):123-30. PubMed ID: 8690845
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Contribution of humoral systems to the short-term variability of blood pressure after severe hemorrhage.
    Ponchon P; Elghozi JL
    Am J Physiol; 1997 Jul; 273(1 Pt 2):R58-69. PubMed ID: 9249533
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Power spectral analysis of short-term RR interval and arterial blood pressure oscillations in the lizard, Gallotia galloti: effects of sympathetic blockade.
    De Vera L; González J
    J Exp Zool; 1999 Feb; 283(2):113-20. PubMed ID: 9919685
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Nervous mechanisms of spontaneous oscillations of systolic blood pressure and heart rate].
    Elghozi JL; Japundzic N; Grichois ML; Zitoun P
    Arch Mal Coeur Vaiss; 1990 Jul; 83(8):1065-8. PubMed ID: 2124441
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of long-term angiotensin converting enzyme inhibition on cardiovascular variability in aging rats.
    Dias da Silva VJ; Montano N; Salgado HC; Fazan Júnior R
    Auton Neurosci; 2006 Jan; 124(1-2):49-55. PubMed ID: 16439186
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of low and high frequency ranges for heart rate variability and blood pressure variability analyses using pharmacological autonomic blockade with atropine and propranolol in swine.
    Poletto R; Janczak AM; Marchant-Forde RM; Marchant JN; Matthews DL; Dowell CA; Hogan DF; Freeman LJ; Lay DC
    Physiol Behav; 2011 May; 103(2):188-96. PubMed ID: 21281655
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of N omega-monomethyl-L-arginine on short-term RR interval and systolic blood pressure oscillations.
    Cordero JJ; González J; Feria M
    J Cardiovasc Pharmacol; 1994 Aug; 24(2):323-7. PubMed ID: 7526068
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Human autonomic responses to blood donation.
    Zöllei E; Paprika D; Makra P; Gingl Z; Vezendi K; Rudas L
    Auton Neurosci; 2004 Feb; 110(2):114-20. PubMed ID: 15046735
    [TBL] [Abstract][Full Text] [Related]  

  • 9. α-Adrenergic effects on low-frequency oscillations in blood pressure and R-R intervals during sympathetic activation.
    Kiviniemi AM; Frances MF; Tiinanen S; Craen R; Rachinsky M; Petrella RJ; Seppänen T; Huikuri HV; Tulppo MP; Shoemaker JK
    Exp Physiol; 2011 Aug; 96(8):718-35. PubMed ID: 21602293
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cardiovascular autonomic function in conscious rats: a novel approach to facilitate stationary conditions.
    Ramaekers D; Beckers F; Demeulemeester H; Aubert AE
    Ann Noninvasive Electrocardiol; 2002 Oct; 7(4):307-18. PubMed ID: 12431308
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cardiovascular autonomic regulation in preterm infants: the effect of atropine.
    Andriessen P; Janssen BJ; Berendsen RC; Oetomo SB; Wijn PF; Blanco CE
    Pediatr Res; 2004 Dec; 56(6):939-46. PubMed ID: 15470200
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Blood pressure modulation by central venous pressure and respiration. Buffering effects of the heart rate reflexes.
    Triedman JK; Saul JP
    Circulation; 1994 Jan; 89(1):169-79. PubMed ID: 8281644
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Hormonal contribution to short-term variability of blood pressure in a renovascular hypertension model].
    Ponchon P; Elghozi JL
    Arch Mal Coeur Vaiss; 1995 Aug; 88(8):1203-7. PubMed ID: 8572874
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Relationship between cortical electrical and cardiac autonomic activities in the awake lizard, Gallotia galloti.
    de Vera L; González J; Pereda E
    J Exp Zool; 2000 Jun; 287(1):21-8. PubMed ID: 10861546
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Low-frequency oscillations in R-R interval and blood pressure across the continuum of cardiovascular risk.
    Kiviniemi AM; Tiinanen S; Hautala AJ; Seppänen T; Norton KN; Frances MF; Nolan RP; Huikuri HV; Tulppo MP; Shoemaker JK
    Auton Neurosci; 2010 Dec; 158(1-2):92-9. PubMed ID: 20573550
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Autonomic nervous system and cardiovascular variability in rats: a spectral analysis approach.
    Cerutti C; Gustin MP; Paultre CZ; Lo M; Julien C; Vincent M; Sassard J
    Am J Physiol; 1991 Oct; 261(4 Pt 2):H1292-9. PubMed ID: 1833987
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of different stresses on cardiac autonomic control and cardiovascular coupling.
    Xie L; Liu B; Wang X; Mei M; Li M; Yu X; Zhang J
    J Appl Physiol (1985); 2017 Mar; 122(3):435-445. PubMed ID: 27979981
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Changes in autonomic activity and baroreflex sensitivity with the hypertension process and age in rats.
    Nagai R; Nagata S; Fukuya F; Higaki J; Rakugi H; Ogihara T
    Clin Exp Pharmacol Physiol; 2003; 30(5-6):419-25. PubMed ID: 12859436
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Insight into blood-pressure control in SHR via the response to acute hemorrhage: a spectral analysis approach.
    Oz O; Eliash S; Cohen S; Akselrod S
    J Auton Nerv Syst; 1995 Nov; 55(3):146-54. PubMed ID: 8801264
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Autonomic cardiovascular control in conscious mice.
    Just A; Faulhaber J; Ehmke H
    Am J Physiol Regul Integr Comp Physiol; 2000 Dec; 279(6):R2214-21. PubMed ID: 11080088
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.