BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

227 related articles for article (PubMed ID: 8691334)

  • 1. Cells of the mononuclear phagocyte series differentiate into osteoclastic lacunar bone resorbing cells.
    Quinn JM; Sabokbar A; Athanasou NA
    J Pathol; 1996 May; 179(1):106-11. PubMed ID: 8691334
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Human tumour-associated macrophages differentiate into osteoclastic bone-resorbing cells.
    Quinn JM; McGee JO; Athanasou NA
    J Pathol; 1998 Jan; 184(1):31-6. PubMed ID: 9582524
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cellular and hormonal mechanisms associated with malignant bone resorption.
    Quinn JM; Matsumura Y; Tarin D; McGee JO; Athanasou NA
    Lab Invest; 1994 Oct; 71(4):465-71. PubMed ID: 7526033
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Macrophage colony-stimulating factor and interleukin-6 release by periprosthetic cells stimulates osteoclast formation and bone resorption.
    Neale SD; Sabokbar A; Howie DW; Murray DW; Athanasou NA
    J Orthop Res; 1999 Sep; 17(5):686-94. PubMed ID: 10569477
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Osteoclasts are capable of particle phagocytosis and bone resorption.
    Wang W; Ferguson DJ; Quinn JM; Simpson AH; Athanasou NA
    J Pathol; 1997 May; 182(1):92-8. PubMed ID: 9227347
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Human osteoclast formation from blood monocytes, peritoneal macrophages, and bone marrow cells.
    Quinn JM; Neale S; Fujikawa Y; McGee JO; Athanasou NA
    Calcif Tissue Int; 1998 Jun; 62(6):527-31. PubMed ID: 9576981
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Generation of osteoclasts in cultures of rabbit bone marrow and spleen cells.
    Fuller K; Chambers TJ
    J Cell Physiol; 1987 Sep; 132(3):441-52. PubMed ID: 3308907
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Osteoclast differentiation and bone resorption in multicentric reticulohistiocytosis.
    Adamopoulos IE; Wordsworth PB; Edwards JR; Ferguson DJ; Athanasou NA
    Hum Pathol; 2006 Sep; 37(9):1176-85. PubMed ID: 16938523
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multinucleated cells formed on calcified dentine from mouse bone marrow cells treated with 1 alpha,25-dihydroxyvitamin D3 have ruffled borders and resorb dentine.
    Sasaki T; Takahashi N; Higashi S; Suda T
    Anat Rec; 1989 Jul; 224(3):379-91. PubMed ID: 2782622
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Osteoprotegerin and osteoprotegerin ligand effects on osteoclast formation from human peripheral blood mononuclear cell precursors.
    Shalhoub V; Faust J; Boyle WJ; Dunstan CR; Kelley M; Kaufman S; Scully S; Van G; Lacey DL
    J Cell Biochem; 1999 Feb; 72(2):251-61. PubMed ID: 10022507
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Induction of osteoclast characteristics in cultured avian blood monocytes; modulation by osteoblasts and 1,25-(OH)2 vitamin D3.
    van't Hof RJ; Tuinenburg-Bol Raap AC; Nijweide PJ
    Int J Exp Pathol; 1995 Jun; 76(3):205-14. PubMed ID: 7547432
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Generation of osteoclastic function in mouse bone marrow cultures: multinuclearity and tartrate-resistant acid phosphatase are unreliable markers for osteoclastic differentiation.
    Hattersley G; Chambers TJ
    Endocrinology; 1989 Apr; 124(4):1689-96. PubMed ID: 2924719
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Human cord blood monocytes undergo terminal osteoclast differentiation in vitro in the presence of culture medium conditioned by giant cell tumor of bone.
    Roux S; Quinn J; Pichaud F; Orcel P; Chastre E; Jullienne A; De Vernejoul MC
    J Cell Physiol; 1996 Sep; 168(3):489-98. PubMed ID: 8816903
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rodent osteoblast-like cells support osteoclastic differentiation of human cord blood monocytes in the presence of M-CSF and 1,25 dihydroxyvitamin D3.
    Quinn JM; Fujikawa Y; McGee JO; Athanasou NA
    Int J Biochem Cell Biol; 1997 Jan; 29(1):173-9. PubMed ID: 9076952
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Osteoclast formation in vitro from bone marrow mononuclear cells in osteoclast-free bone.
    Ko JS; Bernard GW
    Am J Anat; 1981 Aug; 161(4):415-25. PubMed ID: 7282573
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Generation of osteoclasts from hemopoietic cells and a multipotential cell line in vitro.
    Hattersley G; Chambers TJ
    J Cell Physiol; 1989 Sep; 140(3):478-82. PubMed ID: 2777887
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bone cells required for osteoclastic resorption but not for osteoclastic differentiation.
    Owens JM; Gallagher AC; Chambers TJ
    Biochem Biophys Res Commun; 1996 May; 222(2):225-9. PubMed ID: 8670187
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synovial fluid macrophages are capable of osteoclast formation and resorption.
    Adamopoulos IE; Sabokbar A; Wordsworth BP; Carr A; Ferguson DJ; Athanasou NA
    J Pathol; 2006 Jan; 208(1):35-43. PubMed ID: 16278818
    [TBL] [Abstract][Full Text] [Related]  

  • 19. TNF-related apoptosis-inducing ligand (TRAIL) induces osteoclast differentiation from monocyte/macrophage lineage precursor cells.
    Yen ML; Tsai HF; Wu YY; Hwa HL; Lee BH; Hsu PN
    Mol Immunol; 2008 Apr; 45(8):2205-13. PubMed ID: 18206242
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Human osteoclast formation and bone resorption by monocytes and synovial macrophages in rheumatoid arthritis.
    Fujikawa Y; Sabokbar A; Neale S; Athanasou NA
    Ann Rheum Dis; 1996 Nov; 55(11):816-22. PubMed ID: 8976638
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.