BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

227 related articles for article (PubMed ID: 8691334)

  • 21. Osteoblast-like cells complete osteoclastic bone resorption and form new mineralized bone matrix in vitro.
    Mulari MT; Qu Q; Härkönen PL; Väänänen HK
    Calcif Tissue Int; 2004 Sep; 75(3):253-61. PubMed ID: 15148559
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effect of high phosphate concentration on osteoclast differentiation as well as bone-resorbing activity.
    Kanatani M; Sugimoto T; Kano J; Kanzawa M; Chihara K
    J Cell Physiol; 2003 Jul; 196(1):180-9. PubMed ID: 12767054
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Two distinct cellular mechanisms of osteoclast formation and bone resorption in periprosthetic osteolysis.
    Sabokbar A; Kudo O; Athanasou NA
    J Orthop Res; 2003 Jan; 21(1):73-80. PubMed ID: 12507582
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effects of neridronic acid on osteoclasts derived by physiological dual-cell cultures.
    Nicolin V; Bareggi R; Baldini G; Bortul R; Martinelli B; Narducci P
    Acta Histochem; 2007; 109(5):397-402. PubMed ID: 17574655
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Cellular and hormonal factors influencing monocyte differentiation to osteoclastic bone-resorbing cells.
    Quinn JM; McGee JO; Athanasou NA
    Endocrinology; 1994 Jun; 134(6):2416-23. PubMed ID: 8194468
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Induction of mononuclear precursor cells with osteoclastic phenotypes in a rat bone marrow culture system depleted of stromal cells.
    Kukita A; Kukita T; Shin JH; Kohashi O
    Biochem Biophys Res Commun; 1993 Nov; 196(3):1383-9. PubMed ID: 8250894
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Arthroplasty implant biomaterial particle associated macrophages differentiate into lacunar bone resorbing cells.
    Pandey R; Quinn J; Joyner C; Murray DW; Triffitt JT; Athanasou NA
    Ann Rheum Dis; 1996 Jun; 55(6):388-95. PubMed ID: 8694579
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Phenotypic characterization of mononuclear and multinucleated cells of giant cell reparative granuloma of small bones.
    Itonaga I; Schulze E; Burge PD; Gibbons CL; Ferguson D; Athanasou NA
    J Pathol; 2002 Sep; 198(1):30-6. PubMed ID: 12210060
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Lipopolysaccharides (LPS) induce the differentiation of human monocytes to osteoclasts in a tumour necrosis factor (TNF) alpha-dependent manner: a link between infection and pathological bone resorption.
    Mörmann M; Thederan M; Nackchbandi I; Giese T; Wagner C; Hänsch GM
    Mol Immunol; 2008 Jul; 45(12):3330-7. PubMed ID: 18538847
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Characterization of circulating human osteoclast progenitors: development of in vitro resorption assay.
    Husheem M; Nyman JK; Vääräniemi J; Vaananen HK; Hentunen TA
    Calcif Tissue Int; 2005 Mar; 76(3):222-30. PubMed ID: 15692727
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Bimodal actions of reactive oxygen species in the differentiation and bone-resorbing functions of osteoclasts.
    Kim H; Kim IY; Lee SY; Jeong D
    FEBS Lett; 2006 Oct; 580(24):5661-5. PubMed ID: 16996506
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The effect of particle phagocytosis and metallic wear particles on osteoclast formation and bone resorption in vitro.
    Neale SD; Haynes DR; Howie DW; Murray DW; Athanasou NA
    J Arthroplasty; 2000 Aug; 15(5):654-62. PubMed ID: 10960005
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Bone matrix stimulates osteoclastic differentiation in cultures of rabbit bone marrow cells.
    Fuller K; Chambers TJ
    J Bone Miner Res; 1989 Apr; 4(2):179-83. PubMed ID: 2728923
    [TBL] [Abstract][Full Text] [Related]  

  • 34. In vitro generation of mature human osteoclasts.
    Hemingway F; Cheng X; Knowles HJ; Estrada FM; Gordon S; Athanasou NA
    Calcif Tissue Int; 2011 Nov; 89(5):389-95. PubMed ID: 21960377
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Calcitonin receptors as markers for osteoclastic differentiation: correlation between generation of bone-resorptive cells and cells that express calcitonin receptors in mouse bone marrow cultures.
    Hattersley G; Chambers TJ
    Endocrinology; 1989 Sep; 125(3):1606-12. PubMed ID: 2547591
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Overexpression of cathepsin K accelerates the resorption cycle and osteoblast differentiation in vitro.
    Morko J; Kiviranta R; Mulari MT; Ivaska KK; Väänänen HK; Vuorio E; Laitala-Leinonen T
    Bone; 2009 Apr; 44(4):717-28. PubMed ID: 19118660
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Human arthroplasty derived macrophages differentiate into osteoclastic bone resorbing cells.
    Sabokbar A; Fujikawa Y; Neale S; Murray DW; Athanasou NA
    Ann Rheum Dis; 1997 Jul; 56(7):414-20. PubMed ID: 9486003
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Bisphosphonates in bone cement inhibit PMMA particle induced bone resorption.
    Sabokbar A; Fujikawa Y; Murray DW; Athanasou NA
    Ann Rheum Dis; 1998 Oct; 57(10):614-8. PubMed ID: 9893573
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A role for osteocalcin in osteoclast differentiation.
    Glowacki J; Rey C; Glimcher MJ; Cox KA; Lian J
    J Cell Biochem; 1991 Mar; 45(3):292-302. PubMed ID: 2066381
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Osteopetrosis in the toothless rat: failure of osteoclast differentiation and function.
    Osier LK; Popoff SN; Marks SC
    Bone Miner; 1987 Oct; 3(1):35-45. PubMed ID: 3505191
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.