BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 8691441)

  • 1. Topographical amino acid substitution in position 10 of glucagon leads to antagonists/partial agonists with greater binding differences.
    Azizeh BY; Shenderovich MD; Trivedi D; Li G; Sturm NS; Hruby VJ
    J Med Chem; 1996 Jun; 39(13):2449-55. PubMed ID: 8691441
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The role of phenylalanine at position 6 in glucagon's mechanism of biological action: multiple replacement analogues of glucagon.
    Azizeh BY; Ahn JM; Caspari R; Shenderovich MD; Trivedi D; Hruby VJ
    J Med Chem; 1997 Aug; 40(16):2555-62. PubMed ID: 9258362
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Low level cyclic adenosine 3',5'-monophosphate accumulation analysis of [des-His1, des- Phe6, Glu9] glucagon-NH2 identifies glucagon antagonists from weak partial agonists/antagonists.
    Van Tine BA; Azizeh BY; Trivedi D; Phelps JR; Houslay MD; Johnson DG; Hruby VJ
    Endocrinology; 1996 Aug; 137(8):3316-22. PubMed ID: 8754757
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pure glucagon antagonists: biological activities and cAMP accumulation using phosphodiesterase inhibitors.
    Azizeh BY; Van Tine BA; Trivedi D; Hruby VJ
    Peptides; 1997; 18(5):633-41. PubMed ID: 9213355
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synthetic linear and cyclic glucagon antagonists.
    Dharanipragada R; Trivedi D; Bannister A; Siegel M; Tourwe D; Mollova N; Schram K; Hruby VJ
    Int J Pept Protein Res; 1993 Jul; 42(1):68-77. PubMed ID: 8396562
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structure-function studies on positions 17, 18, and 21 replacement analogues of glucagon: the importance of charged residues and salt bridges in glucagon biological activity.
    Sturm NS; Lin Y; Burley SK; Krstenansky JL; Ahn JM; Azizeh BY; Trivedi D; Hruby VJ
    J Med Chem; 1998 Jul; 41(15):2693-700. PubMed ID: 9667960
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The role of histidine-1 in glucagon action.
    Unson CG; Macdonald D; Merrifield RB
    Arch Biochem Biophys; 1993 Feb; 300(2):747-50. PubMed ID: 8382034
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synthetic glucagon antagonists and partial agonists.
    Zechel C; Trivedi D; Hruby VJ
    Int J Pept Protein Res; 1991 Aug; 38(2):131-8. PubMed ID: 1664420
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Novel diastereomeric opioid tetrapeptides exhibit differing pharmacological activity profiles.
    Ioja E; Tourwé D; Kertész I; Tóth G; Borsodi A; Benyhe S
    Brain Res Bull; 2007 Sep; 74(1-3):119-29. PubMed ID: 17683797
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Activation of the hepatic glycine cleavage enzyme system by glucagon and glucagon-related peptides.
    Mabrouk GM; Brosnan JT
    Can J Physiol Pharmacol; 1997 Sep; 75(9):1096-100. PubMed ID: 9365819
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Glucagon antagonists: contribution to binding and activity of the amino-terminal sequence 1-5, position 12, and the putative alpha-helical segment 19-27.
    Unson CG; Gurzenda EM; Iwasa K; Merrifield RB
    J Biol Chem; 1989 Jan; 264(2):789-94. PubMed ID: 2536024
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synthetic peptide antagonists of glucagon.
    Unson CG; Andreu D; Gurzenda EM; Merrifield RB
    Proc Natl Acad Sci U S A; 1987 Jun; 84(12):4083-7. PubMed ID: 3035568
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modifications to the N-terminus but not the C-terminus of calcitonin gene-related peptide(8-37) produce antagonists with increased affinity.
    Smith DD; Saha S; Fang G; Schaffert C; Waugh DJ; Zeng W; Toth G; Hulce M; Abel PW
    J Med Chem; 2003 Jun; 46(12):2427-35. PubMed ID: 12773046
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Divergent structural requirements exist for calcitonin receptor binding specificity and adenylate cyclase activation.
    Houssami S; Findlay DM; Brady CL; Martin TJ; Epand RM; Moore EE; Murayama E; Tamura T; Orlowski RC; Sexton PM
    Mol Pharmacol; 1995 Apr; 47(4):798-809. PubMed ID: 7723741
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Human growth hormone-releasing hormone hGHRH(1-29)-NH2: systematic structure-activity relationship studies.
    Cervini LA; Donaldson CJ; Koerber SC; Vale WW; Rivier JE
    J Med Chem; 1998 Feb; 41(5):717-27. PubMed ID: 9513600
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of the substitution of Phe4 in the opioid peptide [D-Ala8]dynorphin A-(1-11)NH2.
    Vig BS; Zheng MQ; Murray TF; Aldrich JV
    J Med Chem; 2003 Sep; 46(19):4002-8. PubMed ID: 12954053
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Receptor binding and adenylate cyclase activities of glucagon analogues modified in the N-terminal region.
    McKee RL; Pelton JT; Trivedi D; Johnson DG; Coy DH; Sueiras-Diaz J; Hruby VJ
    Biochemistry; 1986 Apr; 25(7):1650-6. PubMed ID: 3011069
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optically active aromatic amino acids. Part VI. Synthesis and properties of (Leu5)-enkephalin analogues containing O-methyl-L-tyrosine1 with ring substitution at position 3'.
    Arnold ZS; Schiller PW
    J Pept Sci; 2000 Jun; 6(6):280-9. PubMed ID: 10912908
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Design of oxytocin antagonists, which are more selective than atosiban.
    Manning M; Stoev S; Cheng LL; Wo NC; Chan WY
    J Pept Sci; 2001 Sep; 7(9):449-65. PubMed ID: 11587184
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification of an essential serine residue in glucagon: implication for an active site triad.
    Unson CG; Merrifield RB
    Proc Natl Acad Sci U S A; 1994 Jan; 91(2):454-8. PubMed ID: 8290548
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.