These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
23. Discovery and combinatorial synthesis of fungal metabolites beauveriolides, novel antiatherosclerotic agents. Tomoda H; Doi T Acc Chem Res; 2008 Jan; 41(1):32-9. PubMed ID: 17803269 [TBL] [Abstract][Full Text] [Related]
24. Acyl-coenzymeA (CoA):cholesterol acyltransferase inhibition in rat and human aortic smooth muscle cells is nontoxic and retards foam cell formation. Rong JX; Kusunoki J; Oelkers P; Sturley SL; Fisher EA Arterioscler Thromb Vasc Biol; 2005 Jan; 25(1):122-7. PubMed ID: 15499046 [TBL] [Abstract][Full Text] [Related]
25. Direct effect of an acyl-CoA:cholesterol acyltransferase inhibitor, F-1394, on atherosclerosis in apolipoprotein E and low density lipoprotein receptor double knockout mice. Chiwata T; Aragane K; Fujinami K; Kojima K; Ishibashi S; Yamada N; Kusunoki J Br J Pharmacol; 2001 Aug; 133(7):1005-12. PubMed ID: 11487509 [TBL] [Abstract][Full Text] [Related]
26. 2-Azetidinone cholesterol absorption inhibitors: structure-activity relationships on the heterocyclic nucleus. Clader JW; Burnett DA; Caplen MA; Domalski MS; Dugar S; Vaccaro W; Sher R; Browne ME; Zhao H; Burrier RE; Salisbury B; Davis HR J Med Chem; 1996 Sep; 39(19):3684-93. PubMed ID: 8809157 [TBL] [Abstract][Full Text] [Related]
27. Bioavailable acyl-CoA: cholesterol acyltransferase inhibitor with anti-peroxidative activity: synthesis and biological activity of novel indolinyl amide and urea derivatives. Kamiya S; Shirahase H; Yoshimi A; Nakamura S; Kanda M; Matsui H; Kasai M; Takahashi K; Kurahashi K Chem Pharm Bull (Tokyo); 2000 Jun; 48(6):817-27. PubMed ID: 10866142 [TBL] [Abstract][Full Text] [Related]
28. Design and synthesis of novel imidazole-substituted dipeptide amides as potent and selective inhibitors of Candida albicans myristoylCoA:protein N-myristoyltransferase and identification of related tripeptide inhibitors with mechanism-based antifungal activity. Devadas B; Freeman SK; Zupec ME; Lu HF; Nagarajan SR; Kishore NS; Lodge JK; Kuneman DW; McWherter CA; Vinjamoori DV; Getman DP; Gordon JI; Sikorski JA J Med Chem; 1997 Aug; 40(16):2609-25. PubMed ID: 9258368 [TBL] [Abstract][Full Text] [Related]
29. 5,6-Diphenylpyridazine derivatives as acyl-CoA:cholesterol acyltransferase inhibitors. Giovannoni MP; Piaz VD; Kwon BM; Kim MK; Kim YK; Toma L; Barlocco D; Bernini F; Canavesi M J Med Chem; 2001 Nov; 44(24):4292-5. PubMed ID: 11708931 [TBL] [Abstract][Full Text] [Related]
30. Inhibition of acyl-CoA cholesterol acyltransferase by F12511 (Eflucimibe): could it be a new antiatherosclerotic therapeutic? López-Farré AJ; Sacristán D; Zamorano-León JJ; San-Martín N; Macaya C Cardiovasc Ther; 2008; 26(1):65-74. PubMed ID: 18466422 [TBL] [Abstract][Full Text] [Related]
31. Chemical modification and structure-activity relationships of pyripyropenes. 3. Synthetic conversion of pyridine-pyrone moiety. Obata R; Sunazuka T; Tian Z; Tomoda H; Harigaya Y; Omura S J Antibiot (Tokyo); 1997 Mar; 50(3):229-36. PubMed ID: 9127194 [TBL] [Abstract][Full Text] [Related]
32. Design and synthesis of potent, selective, and orally bioavailable tetrasubstituted imidazole inhibitors of p38 mitogen-activated protein kinase. Liverton NJ; Butcher JW; Claiborne CF; Claremon DA; Libby BE; Nguyen KT; Pitzenberger SM; Selnick HG; Smith GR; Tebben A; Vacca JP; Varga SL; Agarwal L; Dancheck K; Forsyth AJ; Fletcher DS; Frantz B; Hanlon WA; Harper CF; Hofsess SJ; Kostura M; Lin J; Luell S; O'Neill EA; O'Keefe SJ J Med Chem; 1999 Jun; 42(12):2180-90. PubMed ID: 10377223 [TBL] [Abstract][Full Text] [Related]
33. Synthesis and biological activity of novel 4-phenyl-1,8-naphthyridin-2(1H)-on-3-yl ureas: potent acyl-CoA:cholesterol acyltransferase inhibitor with improved aqueous solubility. Ban H; Muraoka M; Ioriya K; Ohashi N Bioorg Med Chem Lett; 2006 Jan; 16(1):44-8. PubMed ID: 16242323 [TBL] [Abstract][Full Text] [Related]
34. Synthesis and activity of a novel series of 3-biarylquinuclidine squalene synthase inhibitors. Brown GR; Clarke DS; Foubister AJ; Freeman S; Harrison PJ; Johnson MC; Mallion KB; McCormick J; McTaggart F; Reid AC; Smith GJ; Taylor MJ J Med Chem; 1996 Jul; 39(15):2971-9. PubMed ID: 8709131 [TBL] [Abstract][Full Text] [Related]
35. Polyacetylenic compounds, ACAT inhibitors from the roots of Panax ginseng. Rho MC; Lee HS; Lee SW; Chang JS; Kwon OE; Chung MY; Kim YK J Agric Food Chem; 2005 Feb; 53(4):919-22. PubMed ID: 15712998 [TBL] [Abstract][Full Text] [Related]
36. Novel 3-arylamino- and 3-cycloalkylamino-5, 6-diphenyl-pyridazines active as ACAT inhibitors. Toma L; Giovannoni MP; Vergelli C; Dal Piaz V; Kwon BM; Kim YK; Gelain A; Barlocco D Arch Pharm (Weinheim); 2002; 335(11-12):563-6. PubMed ID: 12596221 [TBL] [Abstract][Full Text] [Related]
38. Potent inhibitors of acyl-CoA:cholesterol acyltransferase. Structure-activity relationships of novel N-(4-oxochroman-8-yl)amides. Kataoka K; Shiota T; Takeyasu T; Mochizuki T; Taneda K; Ota M; Tanabe H; Yamaguchi H J Med Chem; 1995 Aug; 38(16):3174-86. PubMed ID: 7636880 [TBL] [Abstract][Full Text] [Related]
39. Effects of F-1394, an acyl-CoA:cholesterol acyltransferase (ACAT) inhibitor, on ACAT activity in HepG2 cells and on hepatic secretion of lipids in Triton WR-1339-induced hyperlipidemic rats: possible role of hepatic ACAT in very low density lipoprotein secretion. Aragane K; Kusunoki J; Kitamine T; Yamaura T; Ohnishi H Jpn J Pharmacol; 1998 Mar; 76(3):309-12. PubMed ID: 9593225 [TBL] [Abstract][Full Text] [Related]
40. Effect of membrane environment on inhibition of acyl-CoA:cholesterol acyltransferase by a range of synthetic inhibitors. Harte RA; Yeaman SJ; Jackson B; Suckling KE Biochim Biophys Acta; 1995 Oct; 1258(3):241-50. PubMed ID: 7548193 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]