These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
205 related articles for article (PubMed ID: 8691483)
1. Evolutionary optimization in quantitative structure-activity relationship: an application of genetic neural networks. So SS; Karplus M J Med Chem; 1996 Mar; 39(7):1521-30. PubMed ID: 8691483 [TBL] [Abstract][Full Text] [Related]
2. Genetic neural networks for quantitative structure-activity relationships: improvements and application of benzodiazepine affinity for benzodiazepine/GABAA receptors. So SS; Karplus M J Med Chem; 1996 Dec; 39(26):5246-56. PubMed ID: 8978853 [TBL] [Abstract][Full Text] [Related]
3. Three-dimensional quantitative structure-activity relationships from molecular similarity matrices and genetic neural networks. 1. Method and validations. So SS; Karplus M J Med Chem; 1997 Dec; 40(26):4347-59. PubMed ID: 9435904 [TBL] [Abstract][Full Text] [Related]
4. Three-dimensional quantitative structure-activity relationships from molecular similarity matrices and genetic neural networks. 2. Applications. So SS; Karplus M J Med Chem; 1997 Dec; 40(26):4360-71. PubMed ID: 9435905 [TBL] [Abstract][Full Text] [Related]
5. Ensembles of Bayesian-regularized genetic neural networks for modeling of acetylcholinesterase inhibition by huprines. Fernández M; Caballero J Chem Biol Drug Des; 2006 Oct; 68(4):201-12. PubMed ID: 17105484 [TBL] [Abstract][Full Text] [Related]
6. QSARs and activity predicting models for competitive inhibitors of adenosine deaminase. Sadat Hayatshahi SH; Abdolmaleki P; Ghiasi M; Safarian S FEBS Lett; 2007 Feb; 581(3):506-14. PubMed ID: 17250831 [TBL] [Abstract][Full Text] [Related]
7. Anticancer activity of selected phenolic compounds: QSAR studies using ridge regression and neural networks. Nandi S; Vracko M; Bagchi MC Chem Biol Drug Des; 2007 Nov; 70(5):424-36. PubMed ID: 17949360 [TBL] [Abstract][Full Text] [Related]
8. Genetic algorithm applied to the selection of factors in principal component-artificial neural networks: application to QSAR study of calcium channel antagonist activity of 1,4-dihydropyridines (nifedipine analogous). Hemmateenejad B; Akhond M; Miri R; Shamsipur M J Chem Inf Comput Sci; 2003; 43(4):1328-34. PubMed ID: 12870926 [TBL] [Abstract][Full Text] [Related]
9. A general method for exploiting QSAR models in lead optimization. Lewis RA J Med Chem; 2005 Mar; 48(5):1638-48. PubMed ID: 15743205 [TBL] [Abstract][Full Text] [Related]
10. QSAR modeling of anti-invasive activity of organic compounds using structural descriptors. Katritzky AR; Kuanar M; Dobchev DA; Vanhoecke BW; Karelson M; Parmar VS; Stevens CV; Bracke ME Bioorg Med Chem; 2006 Oct; 14(20):6933-9. PubMed ID: 16908166 [TBL] [Abstract][Full Text] [Related]
11. Support vector machine based training of multilayer feedforward neural networks as optimized by particle swarm algorithm: application in QSAR studies of bioactivity of organic compounds. Lin WQ; Jiang JH; Zhou YP; Wu HL; Shen GL; Yu RQ J Comput Chem; 2007 Jan; 28(2):519-27. PubMed ID: 17186488 [TBL] [Abstract][Full Text] [Related]
12. Robust QSAR models using Bayesian regularized neural networks. Burden FR; Winkler DA J Med Chem; 1999 Aug; 42(16):3183-7. PubMed ID: 10447964 [TBL] [Abstract][Full Text] [Related]
13. Interpreting computational neural network QSAR models: a measure of descriptor importance. Guha R; Jurs PC J Chem Inf Model; 2005; 45(3):800-6. PubMed ID: 15921469 [TBL] [Abstract][Full Text] [Related]
14. A genetic algorithm optimized fuzzy neural network analysis of the affinity of inhibitors for HIV-1 protease. Fabry-Asztalos L; Andonie R; Collar CJ; Abdul-Wahid S; Salim N Bioorg Med Chem; 2008 Mar; 16(6):2903-11. PubMed ID: 18194868 [TBL] [Abstract][Full Text] [Related]
15. Toward generating simpler QSAR models: nonlinear multivariate regression versus several neural network ensembles and some related methods. Lucić B; Nadramija D; Basic I; Trinajstić N J Chem Inf Comput Sci; 2003; 43(4):1094-102. PubMed ID: 12870898 [TBL] [Abstract][Full Text] [Related]
16. Three new consensus QSAR models for the prediction of Ames genotoxicity. Votano JR; Parham M; Hall LH; Kier LB; Oloff S; Tropsha A; Xie Q; Tong W Mutagenesis; 2004 Sep; 19(5):365-77. PubMed ID: 15388809 [TBL] [Abstract][Full Text] [Related]
17. QSAR study of malonyl-CoA decarboxylase inhibitors using GA-MLR and a new strategy of consensus modeling. Li J; Lei B; Liu H; Li S; Yao X; Liu M; Gramatica P J Comput Chem; 2008 Dec; 29(16):2636-47. PubMed ID: 18484640 [TBL] [Abstract][Full Text] [Related]
18. Prediction of cytotoxicity data (CC(50)) of anti-HIV 5-phenyl-1-phenylamino-1H-imidazole derivatives by artificial neural network trained with Levenberg-Marquardt algorithm. Arab Chamjangali M; Beglari M; Bagherian G J Mol Graph Model; 2007 Jul; 26(1):360-7. PubMed ID: 17350867 [TBL] [Abstract][Full Text] [Related]
19. A comparison of methods for modeling quantitative structure-activity relationships. Sutherland JJ; O'Brien LA; Weaver DF J Med Chem; 2004 Oct; 47(22):5541-54. PubMed ID: 15481990 [TBL] [Abstract][Full Text] [Related]
20. QSAR study of 4-phenylpiperidine derivatives as mu opioid agonists by neural network method. Wang XH; Tang Y; Xie Q; Qiu ZB Eur J Med Chem; 2006 Feb; 41(2):226-32. PubMed ID: 16403590 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]