These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 8691483)

  • 21. Toward an optimal procedure for PC-ANN model building: prediction of the carcinogenic activity of a large set of drugs.
    Hemmateenejad B; Safarpour MA; Miri R; Nesari N
    J Chem Inf Model; 2005; 45(1):190-9. PubMed ID: 15667145
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Ligand-based virtual screening and in silico design of new antimalarial compounds using nonstochastic and stochastic total and atom-type quadratic maps.
    Marrero-Ponce Y; Iyarreta-Veitía M; Montero-Torres A; Romero-Zaldivar C; Brandt CA; Avila PE; Kirchgatter K; Machado Y
    J Chem Inf Model; 2005; 45(4):1082-100. PubMed ID: 16045304
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Molecule kernels: a descriptor- and alignment-free quantitative structure-activity relationship approach.
    Mohr JA; Jain BJ; Obermayer K
    J Chem Inf Model; 2008 Sep; 48(9):1868-81. PubMed ID: 18767832
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A neural networks-based drug discovery approach and its application for designing aldose reductase inhibitors.
    Hu L; Chen G; Chau RM
    J Mol Graph Model; 2006 Jan; 24(4):244-53. PubMed ID: 16226911
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Neural networks in building QSAR models.
    Baskin II; Palyulin VA; Zefirov NS
    Methods Mol Biol; 2008; 458():137-58. PubMed ID: 19065809
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Modeling the activity of furin inhibitors using artificial neural network.
    Worachartcheewan A; Nantasenamat C; Naenna T; Isarankura-Na-Ayudhya C; Prachayasittikul V
    Eur J Med Chem; 2009 Apr; 44(4):1664-73. PubMed ID: 18977558
    [TBL] [Abstract][Full Text] [Related]  

  • 27. QSAR model for predicting pesticide aquatic toxicity.
    Mazzatorta P; Smiesko M; Lo Piparo E; Benfenati E
    J Chem Inf Model; 2005; 45(6):1767-74. PubMed ID: 16309283
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Modeling of cyclin-dependent kinase inhibition by 1H-pyrazolo[3,4-d]pyrimidine derivatives using artificial neural network ensembles.
    Fernández M; Tundidor-Camba A; Caballero J
    J Chem Inf Model; 2005; 45(6):1884-95. PubMed ID: 16309296
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Studying the explanatory capacity of artificial neural networks for understanding environmental chemical quantitative structure-activity relationship models.
    Yang L; Wang P; Jiang Y; Chen J
    J Chem Inf Model; 2005; 45(6):1804-11. PubMed ID: 16309287
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Particle swarm algorithm trained neural network for QSAR studies of inhibitors of platelet-derived growth factor receptor phosphorylation.
    Shen Q; Shi WM; Yang XP; Ye BX
    Eur J Pharm Sci; 2006 Aug; 28(5):369-76. PubMed ID: 16713200
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Application of ab initio theory to QSAR study of 1,4-dihydropyridine-based calcium channel blockers using GA-MLR and PC-GA-ANN procedures.
    Hemmateenejad B; Safarpour MA; Miri R; Taghavi F
    J Comput Chem; 2004 Sep; 25(12):1495-503. PubMed ID: 15224393
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Generation of QSAR sets with a self-organizing map.
    Guha R; Serra JR; Jurs PC
    J Mol Graph Model; 2004 Sep; 23(1):1-14. PubMed ID: 15331049
    [TBL] [Abstract][Full Text] [Related]  

  • 33. McQSAR: a multiconformational quantitative structure-activity relationship engine driven by genetic algorithms.
    Vainio MJ; Johnson MS
    J Chem Inf Model; 2005; 45(6):1953-61. PubMed ID: 16309302
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Variable selection and interpretation in structure-affinity correlation modeling of estrogen receptor binders.
    Marini F; Roncaglioni A; Novic M
    J Chem Inf Model; 2005; 45(6):1507-19. PubMed ID: 16309247
    [TBL] [Abstract][Full Text] [Related]  

  • 35. QSAR modeling of human serum protein binding with several modeling techniques utilizing structure-information representation.
    Votano JR; Parham M; Hall LM; Hall LH; Kier LB; Oloff S; Tropsha A
    J Med Chem; 2006 Nov; 49(24):7169-81. PubMed ID: 17125269
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Prediction of toxicity and data exploratory analysis of estrogen-active endocrine disruptors using counter-propagation artificial neural networks.
    Stojić N; Erić S; Kuzmanovski I
    J Mol Graph Model; 2010 Nov; 29(3):450-60. PubMed ID: 20952233
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Importance of molecular computer modeling in anticancer drug development.
    Geromichalos GD
    J BUON; 2007 Sep; 12 Suppl 1():S101-18. PubMed ID: 17935268
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A group center overlap based approach for "3D QSAR" studies on TIBO derivatives.
    Sapre NS; Gupta S; Pancholi N; Sapre N
    J Comput Chem; 2009 Apr; 30(6):922-33. PubMed ID: 18785154
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Prediction of HPLC retention index using artificial neural networks and IGroup E-state indices.
    Albaugh DR; Hall LM; Hill DW; Kertesz TM; Parham M; Hall LH; Grant DF
    J Chem Inf Model; 2009 Apr; 49(4):788-99. PubMed ID: 19309176
    [TBL] [Abstract][Full Text] [Related]  

  • 40. An alternative approach for neural network evolution with a genetic algorithm: crossover by combinatorial optimization.
    García-Pedrajas N; Ortiz-Boyer D; Hervás-Martínez C
    Neural Netw; 2006 May; 19(4):514-28. PubMed ID: 16343847
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.