BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

233 related articles for article (PubMed ID: 8691720)

  • 1. Renal Na(+)-phosphate cotransporter gene expression in X-linked Hyp and Gy mice.
    Tenenhouse HS; Beck L
    Kidney Int; 1996 Apr; 49(4):1027-32. PubMed ID: 8691720
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Renal expression of Na+-phosphate cotransporter mRNA and protein: effect of the Gy mutation and low phosphate diet.
    Beck L; Tenenhouse HS; Meyer RA; Meyer MH; Biber J; Murer H
    Pflugers Arch; 1996 Apr; 431(6):936-41. PubMed ID: 8927512
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Growth hormone normalizes renal 1,25-dihydroxyvitamin D3-24-hydroxylase gene expression but not Na+-phosphate cotransporter (Npt2) mRNA in phosphate-deprived Hyp mice.
    Roy S; Martel J; Tenenhouse HS
    J Bone Miner Res; 1997 Oct; 12(10):1672-80. PubMed ID: 9333128
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of Npt2 gene ablation and low-phosphate diet on renal Na(+)/phosphate cotransport and cotransporter gene expression.
    Hoag HM; Martel J; Gauthier C; Tenenhouse HS
    J Clin Invest; 1999 Sep; 104(6):679-86. PubMed ID: 10491403
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Differential effects of Npt2a gene ablation and X-linked Hyp mutation on renal expression of Npt2c.
    Tenenhouse HS; Martel J; Gauthier C; Segawa H; Miyamoto K
    Am J Physiol Renal Physiol; 2003 Dec; 285(6):F1271-8. PubMed ID: 12952859
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Differential expression, abundance, and regulation of Na+-phosphate cotransporter genes in murine kidney.
    Tenenhouse HS; Roy S; Martel J; Gauthier C
    Am J Physiol; 1998 Oct; 275(4):F527-34. PubMed ID: 9755124
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Renal expression of the sodium/phosphate cotransporter gene, Npt2, is not required for regulation of renal 1 alpha-hydroxylase by phosphate.
    Tenenhouse HS; Martel J; Gauthier C; Zhang MY; Portale AA
    Endocrinology; 2001 Mar; 142(3):1124-9. PubMed ID: 11181527
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Npt2 gene disruption confers resistance to the inhibitory action of parathyroid hormone on renal sodium-phosphate cotransport.
    Zhao N; Tenenhouse HS
    Endocrinology; 2000 Jun; 141(6):2159-65. PubMed ID: 10830304
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Renal Na(+)-phosphate cotransport in murine X-linked hypophosphatemic rickets. Molecular characterization.
    Tenenhouse HS; Werner A; Biber J; Ma S; Martel J; Roy S; Murer H
    J Clin Invest; 1994 Feb; 93(2):671-6. PubMed ID: 8113402
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of P(i) restriction on renal Na(+)-P(i) cotransporter mRNA and immunoreactive protein in X-linked Hyp mice.
    Tenenhouse HS; Martel J; Biber J; Murer H
    Am J Physiol; 1995 Jun; 268(6 Pt 2):F1062-9. PubMed ID: 7611447
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The molecular defect in the renal sodium-phosphate transporter expression pathway of Gyro (Gy) mice is distinct from that of hypophosphatemic (Hyp) mice.
    Collins JF; Ghishan FK
    FASEB J; 1996 May; 10(7):751-9. PubMed ID: 8635692
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Targeted inactivation of Npt2 in mice leads to severe renal phosphate wasting, hypercalciuria, and skeletal abnormalities.
    Beck L; Karaplis AC; Amizuka N; Hewson AS; Ozawa H; Tenenhouse HS
    Proc Natl Acad Sci U S A; 1998 Apr; 95(9):5372-7. PubMed ID: 9560283
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of the type II Na(+)-Pi cotransporter (Npt2) in the osteoclast and the skeletal phenotype of Npt2-/- mice.
    Gupta A; Tenenhouse HS; Hoag HM; Wang D; Khadeer MA; Namba N; Feng X; Hruska KA
    Bone; 2001 Nov; 29(5):467-76. PubMed ID: 11704500
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cellular mechanisms of the age-related decrease in renal phosphate reabsorption.
    Sorribas V; Lötscher M; Loffing J; Biber J; Kaissling B; Murer H; Levi M
    Kidney Int; 1996 Sep; 50(3):855-63. PubMed ID: 8872960
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transcriptional regulation of the NPT2 gene by dietary phosphate.
    Miyamoto KI; Itho M
    Kidney Int; 2001 Aug; 60(2):412-5. PubMed ID: 11473618
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structure of murine and human renal type II Na+-phosphate cotransporter genes (Npt2 and NPT2).
    Hartmann CM; Hewson AS; Kos CH; Hilfiker H; Soumounou Y; Murer H; Tenenhouse HS
    Proc Natl Acad Sci U S A; 1996 Jul; 93(14):7409-14. PubMed ID: 8693007
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Novel phosphate-regulating genes in the pathogenesis of renal phosphate wasting disorders.
    Tenenhouse HS; Sabbagh Y
    Pflugers Arch; 2002 Jun; 444(3):317-26. PubMed ID: 12111239
    [TBL] [Abstract][Full Text] [Related]  

  • 18. NHERF-1 is required for renal adaptation to a low-phosphate diet.
    Weinman EJ; Boddeti A; Cunningham R; Akom M; Wang F; Wang Y; Liu J; Steplock D; Shenolikar S; Wade JB
    Am J Physiol Renal Physiol; 2003 Dec; 285(6):F1225-32. PubMed ID: 12952857
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Renal calcification in mice homozygous for the disrupted type IIa Na/Pi cotransporter gene Npt2.
    Chau H; El-Maadawy S; McKee MD; Tenenhouse HS
    J Bone Miner Res; 2003 Apr; 18(4):644-57. PubMed ID: 12674325
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification of regulatory sequences and binding proteins in the type II sodium/phosphate cotransporter NPT2 gene responsive to dietary phosphate.
    Kido S; Miyamoto K; Mizobuchi H; Taketani Y; Ohkido I; Ogawa N; Kaneko Y; Harashima S; Takeda E
    J Biol Chem; 1999 Oct; 274(40):28256-63. PubMed ID: 10497181
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.