BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 8691742)

  • 1. Structural and functional aspects of the phosphate carrier from mitochondria.
    Krämer R
    Kidney Int; 1996 Apr; 49(4):947-52. PubMed ID: 8691742
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The reversible antiport-uniport conversion of the phosphate carrier from yeast mitochondria depends on the presence of a single cysteine.
    Schroers A; Krämer R; Wohlrab H
    J Biol Chem; 1997 Apr; 272(16):10558-64. PubMed ID: 9099701
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mitochondrial carrier proteins can reversibly change their transport mode: the cases of the aspartate/glutamate and the phosphate carrier.
    Krämer R
    Exp Physiol; 1998 Mar; 83(2):259-65. PubMed ID: 9568487
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Kinetic mechanism of phosphate/phosphate and phosphate/OH- antiports catalyzed by reconstituted phosphate carrier from beef heart mitochondria.
    Stappen R; Krämer R
    J Biol Chem; 1994 Apr; 269(15):11240-6. PubMed ID: 8157653
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Replacements of basic and hydroxyl amino acids identify structurally and functionally sensitive regions of the mitochondrial phosphate transport protein.
    Briggs C; Mincone L; Wohlrab H
    Biochemistry; 1999 Apr; 38(16):5096-102. PubMed ID: 10213613
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mitochondrial phosphate transport. N-ethylmaleimide insensitivity correlates with absence of beef heart-like Cys42 from the Saccharomyces cerevisiae phosphate transport protein.
    Guérin B; Bukusoglu C; Rakotomanana F; Wohlrab H
    J Biol Chem; 1990 Nov; 265(32):19736-41. PubMed ID: 2246257
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interaction of mitochondrial phosphate carrier with fatty acids and hydrophobic phosphate analogs.
    Zácková M; Krämer R; Jezek P
    Int J Biochem Cell Biol; 2000 May; 32(5):499-508. PubMed ID: 10736565
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Functional properties of the reconstituted phosphate carrier from bovine heart mitochondria: evidence for asymmetric orientation and characterization of three different transport modes.
    Stappen R; Krämer R
    Biochim Biophys Acta; 1993 Jun; 1149(1):40-8. PubMed ID: 8318530
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Functional properties of purified and reconstituted mitochondrial metabolite carriers.
    Palmieri F; Indiveri C; Bisaccia F; Krämer R
    J Bioenerg Biomembr; 1993 Oct; 25(5):525-35. PubMed ID: 8132492
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phosphate transport in mitochondria: past accomplishments, present problems, and future challenges.
    Ferreira GC; Pedersen PL
    J Bioenerg Biomembr; 1993 Oct; 25(5):483-92. PubMed ID: 8132488
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Kinetic characterization of the reconstituted dicarboxylate carrier from mitochondria: a four-binding-site sequential transport system.
    Indiveri C; Prezioso G; Dierks T; Krämer R; Palmieri F
    Biochim Biophys Acta; 1993 Jul; 1143(3):310-8. PubMed ID: 8329439
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The protein component(s) of the isolated phosphate-transport system of mitochondria.
    Kolbe HV; Mende P; Kadenbach B
    Eur J Biochem; 1982 Nov; 128(1):97-105. PubMed ID: 7173215
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reaction mechanism of the reconstituted aspartate/glutamate carrier from bovine heart mitochondria.
    Dierks T; Riemer E; Krämer R
    Biochim Biophys Acta; 1988 Aug; 943(2):231-44. PubMed ID: 2900025
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The reconstituted carnitine carrier from rat liver mitochondria: evidence for a transport mechanism different from that of the other mitochondrial translocators.
    Indiveri C; Tonazzi A; Palmieri F
    Biochim Biophys Acta; 1994 Jan; 1189(1):65-73. PubMed ID: 8305461
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Kinetic and energetic characterization of solute flux through the reconstituted aspartate/glutamate carrier from beef heart mitochondria after modification with mercurials.
    Herick K; Krämer R
    Biochim Biophys Acta; 1995 Aug; 1238(1):63-71. PubMed ID: 7654752
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The phosphate carrier from yeast mitochondria. Dimerization is a prerequisite for function.
    Schroers A; Burkovski A; Wohlrab H; Krämer R
    J Biol Chem; 1998 Jun; 273(23):14269-76. PubMed ID: 9603933
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Elevated phosphate transporting activity and phosphate carrier content in mitochondria of rat hepatoma with high glycolytic capacity.
    Tkácová E; Kuzela S
    Biochem Int; 1985 Jul; 11(1):45-50. PubMed ID: 4038318
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Isolation and reconstitution of an N-ethylmaleimide-sensitive phosphate transport protein from rat liver mitochondria.
    Wehrle JP; Pedersen PL
    Arch Biochem Biophys; 1983 Jun; 223(2):477-83. PubMed ID: 6305281
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The mitochondrial aspartate/glutamate and ADP/ATP carrier switch from obligate counterexchange to unidirectional transport after modification by SH-reagents.
    Dierks T; Salentin A; Heberger C; Krämer R
    Biochim Biophys Acta; 1990 Oct; 1028(3):268-80. PubMed ID: 1977471
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Kinetic study of the aspartate/glutamate carrier in intact rat heart mitochondria and comparison with a reconstituted system.
    Sluse FE; Evens A; Dierks T; Duyckaerts C; Sluse-Goffart CM; Krämer R
    Biochim Biophys Acta; 1991 Jul; 1058(3):329-38. PubMed ID: 2065061
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.