These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

82 related articles for article (PubMed ID: 869177)

  • 1. Low-pressure microwave-induced plasma emission spectrometry method for the determination of nanogram quantities of arsenic in monoarsanilazo Tyr-248 carboxypeptidase.
    Atsuya I; Alter GM; Veillon C; Vallee BL
    Anal Biochem; 1977 May; 79(1-2):202-11. PubMed ID: 869177
    [No Abstract]   [Full Text] [Related]  

  • 2. Low-pressure microwave-induced helium plasma emission spectrometry: determination of subnanogram quantities of zinc by use of a tungsten filament vaporization system.
    Kumamaru T; Riordan JF; Vallee BL
    Anal Biochem; 1982 Oct; 126(1):208-13. PubMed ID: 7181112
    [No Abstract]   [Full Text] [Related]  

  • 3. [Application of ion exchange chromatography to the activation analysis determination of sodium and potassium in molybdenum and tungsten].
    Döge HG
    Anal Chim Acta; 1967; 38(1):207-11. PubMed ID: 6045420
    [No Abstract]   [Full Text] [Related]  

  • 4. Direct determination of arsenic in steel by glow discharge optical emission spectrometry with argon-helium mixed gas.
    Wagatsuma K
    Anal Sci; 2003 Feb; 19(2):325-7. PubMed ID: 12608769
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comments on "The determination of tungsten, molybdenum, and phosphorus oxyanions by high performance liquid chromatography inductively coupled plasma mass spectrometery" by Bednar et al.
    Pardus M
    Talanta; 2008 Jun; 76(1):233; author reply 234. PubMed ID: 18585268
    [No Abstract]   [Full Text] [Related]  

  • 6. Low-pressure, microwave-induced plasma spectrometry method for the determination of subnanogram quantities of mercury.
    Atsuya I; Kawaguchi H; Vallee BL
    Anal Biochem; 1977 Jan; 77(1):208-15. PubMed ID: 831572
    [No Abstract]   [Full Text] [Related]  

  • 7. Rapid ion chromatographic separation and determination of arsenic(III)-arsenic(V) and molybdenum(VI)-chromium(VI).
    Hu ZD; Tang YB
    Analyst; 1988 Jan; 113(1):179-81. PubMed ID: 3358508
    [No Abstract]   [Full Text] [Related]  

  • 8. Electroanalytical determination of tungsten and molybdenum in proteins.
    Hagedoorn PL; van't Slot P; van Leeuwen HP; Hagen WR
    Anal Biochem; 2001 Oct; 297(1):71-8. PubMed ID: 11567529
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Spectrophotometric method of determination of carboxypeptidase activity].
    Ksycińska H; Grzegorzewska J
    Acta Pol Pharm; 1980; 37(6):681-4. PubMed ID: 7293807
    [No Abstract]   [Full Text] [Related]  

  • 10. Conflict minerals in the compute sector: estimating extent of tin, tantalum, tungsten, and gold use in ICT products.
    Fitzpatrick C; Olivetti E; Miller R; Roth R; Kirchain R
    Environ Sci Technol; 2015 Jan; 49(2):974-81. PubMed ID: 25453363
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Arsanilazocarboxypeptidase A: environmentally sensitive extrinsic Cotton effects.
    Kagan HM; Vallee BL
    Biochem Biophys Res Commun; 1969 Mar; 34(5):654-60. PubMed ID: 5777782
    [No Abstract]   [Full Text] [Related]  

  • 12. [Oligo-elements of the Vichy-Etat waters: zinc--tungsten--molybdenum].
    Accoyer P; Ribaud S; Liocourt R
    Presse Therm Clim; 1968; 105(3):151-3. PubMed ID: 5757581
    [No Abstract]   [Full Text] [Related]  

  • 13. Assessing potential release tendency of As, Mo and W in the tributary sediments of the Three Gorges Reservoir, China.
    Gao L; Gao B; Peng W; Xu D; Yin S
    Ecotoxicol Environ Saf; 2018 Jan; 147():342-348. PubMed ID: 28858707
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spectrophotometric determination of trace arsenic in water samples using a nanoparticle of ethyl violet with a molybdate-iodine tetrachloride complex as a probe for molybdoarsenate.
    Morita K; Kaneko E
    Anal Chem; 2006 Nov; 78(22):7682-8. PubMed ID: 17105159
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microwave sample-digestion procedure for determination of arsenic in moss samples using electrothermal atomic absorption spectrometry and inductively coupled plasma mass spectrometry.
    Niemelä M; Perämäki P; Piispanen J
    Anal Bioanal Chem; 2003 Mar; 375(5):673-8. PubMed ID: 12638052
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Investigation of the direct hydride generation nebulizer for the determination of arsenic, antimony and selenium in inductively coupled plasma optical emission spectrometry.
    Rojas I; Murillo M; Carrión N; Chirinos J
    Anal Bioanal Chem; 2003 May; 376(1):110-7. PubMed ID: 12677344
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Determination of tungsten and cobalt in the air of workplace by ICP-OES].
    Zhang J; Ding CG; Li HB; Song S; Yan HF
    Zhonghua Lao Dong Wei Sheng Zhi Ye Bing Za Zhi; 2017 Aug; 35(8):624-626. PubMed ID: 29081139
    [No Abstract]   [Full Text] [Related]  

  • 18. A fast and accurate microwave-assisted digestion method for arsenic determination in complex mining residues by flame atomic absorption spectrometry.
    Pantuzzo FL; Silva JC; Ciminelli VS
    J Hazard Mater; 2009 Sep; 168(2-3):1636-8. PubMed ID: 19345010
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multielemental Determination of As, Bi, Ge, Sb, and Sn in Agricultural Samples Using Hydride Generation Coupled to Microwave-Induced Plasma Optical Emission Spectrometry.
    Machado RC; Amaral CDB; Nóbrega JA; Araujo Nogueira AR
    J Agric Food Chem; 2017 Jun; 65(23):4839-4842. PubMed ID: 28545295
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An alternative analytical method for determining arsenic species in rice by using ion chromatography and inductively coupled plasma-mass spectrometry.
    Son SH; Lee WB; Kim D; Lee Y; Nam SH
    Food Chem; 2019 Jan; 270():353-358. PubMed ID: 30174058
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.