These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
136 related articles for article (PubMed ID: 8692028)
1. Measuring glycerol turnover, gluconeogenesis from glycerol, and total gluconeogenesis with [2-13C] glycerol: role of the infusion-sampling mode. Peroni O; Large V; Odeon M; Beylot M Metabolism; 1996 Jul; 45(7):897-901. PubMed ID: 8692028 [TBL] [Abstract][Full Text] [Related]
2. Glucose production and gluconeogenesis in postabsorptive and starved normal and streptozotocin-diabetic rats. Peroni O; Large V; Diraison F; Beylot M Metabolism; 1997 Nov; 46(11):1358-63. PubMed ID: 9361699 [TBL] [Abstract][Full Text] [Related]
3. Measuring gluconeogenesis with [2-13C]glycerol and mass isotopomer distribution analysis of glucose. Peroni O; Large V; Beylot M Am J Physiol; 1995 Sep; 269(3 Pt 1):E516-23. PubMed ID: 7573429 [TBL] [Abstract][Full Text] [Related]
4. Gluconeogenesis and intrahepatic triose phosphate flux in response to fasting or substrate loads. Application of the mass isotopomer distribution analysis technique with testing of assumptions and potential problems. Neese RA; Schwarz JM; Faix D; Turner S; Letscher A; Vu D; Hellerstein MK J Biol Chem; 1995 Jun; 270(24):14452-66. PubMed ID: 7782307 [TBL] [Abstract][Full Text] [Related]
5. Limitations of the mass isotopomer distribution analysis of glucose to study gluconeogenesis. Heterogeneity of glucose labeling in incubated hepatocytes. Previs SF; Hallowell PT; Neimanis KD; David F; Brunengraber H J Biol Chem; 1998 Jul; 273(27):16853-9. PubMed ID: 9642245 [TBL] [Abstract][Full Text] [Related]
6. Relative importance of liver, kidney, and substrates in epinephrine-induced increased gluconeogenesis in humans. Meyer C; Stumvoll M; Welle S; Woerle HJ; Haymond M; Gerich J Am J Physiol Endocrinol Metab; 2003 Oct; 285(4):E819-26. PubMed ID: 12959936 [TBL] [Abstract][Full Text] [Related]
7. The effect of fasting and fructose and glucose infusion on gluconeogenesis and triose phosphate flux in rats in vivo. Wolf G Nutr Rev; 1995 Oct; 53(10):299-301. PubMed ID: 8584289 [TBL] [Abstract][Full Text] [Related]
8. A critical evaluation of mass isotopomer distribution analysis of gluconeogenesis in vivo. Previs SF; Cline GW; Shulman GI Am J Physiol; 1999 Jul; 277(1):E154-60. PubMed ID: 10409139 [TBL] [Abstract][Full Text] [Related]
9. Altered fluxes responsible for reduced hepatic glucose production and gluconeogenesis by exogenous glucose in rats. Hellerstein MK; Neese RA; Schwarz JM; Turner S; Faix D; Wu K Am J Physiol; 1997 Jan; 272(1 Pt 1):E163-72. PubMed ID: 9038866 [TBL] [Abstract][Full Text] [Related]
10. Effects of free fatty acid elevation on postabsorptive endogenous glucose production and gluconeogenesis in humans. Roden M; Stingl H; Chandramouli V; Schumann WC; Hofer A; Landau BR; Nowotny P; Waldhäusl W; Shulman GI Diabetes; 2000 May; 49(5):701-7. PubMed ID: 10905476 [TBL] [Abstract][Full Text] [Related]
11. Limitations of the mass isotopomer distribution analysis of glucose to study gluconeogenesis. Substrate cycling between glycerol and triose phosphates in liver. Previs SF; Fernandez CA; Yang D; Soloviev MV; David F; Brunengraber H J Biol Chem; 1995 Aug; 270(34):19806-15. PubMed ID: 7649990 [TBL] [Abstract][Full Text] [Related]
12. The quantification of gluconeogenesis in healthy men by (2)H2O and [2-(13)C]glycerol yields different results: rates of gluconeogenesis in healthy men measured with (2)H2O are higher than those measured with [2-(13)C]glycerol. Ackermans MT; Pereira Arias AM; Bisschop PH; Endert E; Sauerwein HP; Romijn JA J Clin Endocrinol Metab; 2001 May; 86(5):2220-6. PubMed ID: 11344230 [TBL] [Abstract][Full Text] [Related]
13. Loss of [13C]glycerol carbon via the pentose cycle. Implications for gluconeogenesis measurement by mass isotoper distribution analysis. Kurland IJ; Alcivar A; Bassilian S; Lee WN J Biol Chem; 2000 Nov; 275(47):36787-93. PubMed ID: 10960476 [TBL] [Abstract][Full Text] [Related]
14. Glycerol not lactate is the major net carbon source for gluconeogenesis in mice during both short and prolonged fasting. Wang Y; Kwon H; Su X; Wondisford FE Mol Metab; 2020 Jan; 31():36-44. PubMed ID: 31918920 [TBL] [Abstract][Full Text] [Related]
15. Measurement of gluconeogenesis in exercising men by mass isotopomer distribution analysis. Trimmer JK; Schwarz JM; Casazza GA; Horning MA; Rodriguez N; Brooks GA J Appl Physiol (1985); 2002 Jul; 93(1):233-41. PubMed ID: 12070210 [TBL] [Abstract][Full Text] [Related]
16. Lactate and pyruvate isotopic enrichments in plasma and tissues of postabsorptive and starved rats. Large V; Soloviev M; Brunengraber H; Beylot M Am J Physiol; 1995 May; 268(5 Pt 1):E880-8. PubMed ID: 7762641 [TBL] [Abstract][Full Text] [Related]
17. Lactate production and absence of gluconeogenesis from placental transferred substrates in fetuses from fed and 48-H starved rats. Palacin M; Lasunción MA; Herrera E Pediatr Res; 1987 Jul; 22(1):6-10. PubMed ID: 3627873 [TBL] [Abstract][Full Text] [Related]
19. Methods for measuring gluconeogenesis in vivo. Previs SF; Brunengraber H Curr Opin Clin Nutr Metab Care; 1998 Sep; 1(5):461-5. PubMed ID: 10565394 [TBL] [Abstract][Full Text] [Related]
20. Effects of fasting and glucocorticoids on hepatic gluconeogenesis assessed using two independent methods in vivo. Goldstein RE; Rossetti L; Palmer BA; Liu R; Massillon D; Scott M; Neal D; Williams P; Peeler B; Cherrington AD Am J Physiol Endocrinol Metab; 2002 Nov; 283(5):E946-57. PubMed ID: 12376321 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]