These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
286 related articles for article (PubMed ID: 8692703)
1. Triplex formation by oligonucleotides containing novel deoxycytidine derivatives. Huang CY; Bi G; Miller PS Nucleic Acids Res; 1996 Jul; 24(13):2606-13. PubMed ID: 8692703 [TBL] [Abstract][Full Text] [Related]
2. Interactions of cytosine derivatives with T.A interruptions in pyrimidine.purine.pyrimidine DNA triplexes. Verma S; Miller PS Bioconjug Chem; 1996; 7(5):600-5. PubMed ID: 8889023 [TBL] [Abstract][Full Text] [Related]
3. Triplex formation by oligodeoxyribonucleotides involving the formation of X.U.A triads. Miller PS; Cushman CD Biochemistry; 1993 Mar; 32(12):2999-3004. PubMed ID: 8457563 [TBL] [Abstract][Full Text] [Related]
4. Evidence for a DNA triplex in a recombination-like motif: I. Recognition of Watson-Crick base pairs by natural bases in a high-stability triplex. Walter A; Schütz H; Simon H; Birch-Hirschfeld E J Mol Recognit; 2001; 14(2):122-39. PubMed ID: 11301482 [TBL] [Abstract][Full Text] [Related]
5. Strong, specific, monodentate G-C base pair recognition by N7-inosine derivatives in the pyrimidine.purine-pyrimidine triple-helical binding motif. Marfurt J; Parel SP; Leumann CJ Nucleic Acids Res; 1997 May; 25(10):1875-82. PubMed ID: 9115352 [TBL] [Abstract][Full Text] [Related]
6. Thermodynamic characterization of the stability and the melting behavior of a DNA triplex: a spectroscopic and calorimetric study. Plum GE; Park YW; Singleton SF; Dervan PB; Breslauer KJ Proc Natl Acad Sci U S A; 1990 Dec; 87(23):9436-40. PubMed ID: 2251285 [TBL] [Abstract][Full Text] [Related]
7. Sequence-specific DNA-triplex formation at imperfect homopurine-homopyrimidine sequences within a DNA plasmid. Xodo LE; Alunni-Fabbroni M; Manzini G; Quadrifoglio F Eur J Biochem; 1993 Mar; 212(2):395-401. PubMed ID: 8444176 [TBL] [Abstract][Full Text] [Related]
8. Triplex formation by a psoralen-conjugated oligodeoxyribonucleotide containing the base analog 8-oxo-adenine. Miller PS; Bi G; Kipp SA; Fok V; DeLong RK Nucleic Acids Res; 1996 Feb; 24(4):730-6. PubMed ID: 8604317 [TBL] [Abstract][Full Text] [Related]
9. Triplex formation at physiological pH by 5-Me-dC-N4-(spermine) [X] oligodeoxynucleotides: non protonation of N3 in X of X*G:C triad and effect of base mismatch/ionic strength on triplex stabilities. Barawkar DA; Rajeev KG; Kumar VA; Ganesh KN Nucleic Acids Res; 1996 Apr; 24(7):1229-37. PubMed ID: 8614624 [TBL] [Abstract][Full Text] [Related]
10. Circular dichroism and UV melting studies on formation of an intramolecular triplex containing parallel T*A:T and G*G:C triplets: netropsin complexation with the triplex. Gondeau C; Maurizot JC; Durand M Nucleic Acids Res; 1998 Nov; 26(21):4996-5003. PubMed ID: 9776765 [TBL] [Abstract][Full Text] [Related]
11. Solution structure of a pyrimidine.purine.pyrimidine DNA triplex containing T.AT, C+.GC and G.TA triples. Radhakrishnan I; Patel DJ Structure; 1994 Jan; 2(1):17-32. PubMed ID: 8075980 [TBL] [Abstract][Full Text] [Related]
12. Bimolecular DNA triplexes: duplex extensions show implications for H-form DNA stability. Mundt AA; Crouch GJ; Eaton BE Biochemistry; 1997 Oct; 36(42):13004-9. PubMed ID: 9335561 [TBL] [Abstract][Full Text] [Related]
13. DNA triple helix formation at target sites containing several pyrimidine interruptions: stabilization by protonated cytosine or 5-(1-propargylamino)dU. Gowers DM; Bijapur J; Brown T; Fox KR Biochemistry; 1999 Oct; 38(41):13747-58. PubMed ID: 10521282 [TBL] [Abstract][Full Text] [Related]
14. DNA duplexes and triplex-forming oligodeoxynucleotides incorporating modified nucleosides forming stable and selective triplexes. Kanamori T; Masaki Y; Mizuta M; Tsunoda H; Ohkubo A; Sekine M; Seio K Org Biomol Chem; 2012 Feb; 10(5):1007-13. PubMed ID: 22146807 [TBL] [Abstract][Full Text] [Related]