These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
267 related articles for article (PubMed ID: 8692734)
1. Transdermal drug delivery using low-frequency sonophoresis. Mitragotri S; Blankschtein D; Langer R Pharm Res; 1996 Mar; 13(3):411-20. PubMed ID: 8692734 [TBL] [Abstract][Full Text] [Related]
2. Characterization of transdermal solute transport induced by low-frequency ultrasound in the hairless rat skin. Mutoh M; Ueda H; Nakamura Y; Hirayama K; Atobe M; Kobayashi D; Morimoto Y J Control Release; 2003 Sep; 92(1-2):137-46. PubMed ID: 14499192 [TBL] [Abstract][Full Text] [Related]
3. A mechanistic study of ultrasonically-enhanced transdermal drug delivery. Mitragotri S; Edwards DA; Blankschtein D; Langer R J Pharm Sci; 1995 Jun; 84(6):697-706. PubMed ID: 7562407 [TBL] [Abstract][Full Text] [Related]
4. Dependence of low-frequency sonophoresis on ultrasound parameters; distance of the horn and intensity. Terahara T; Mitragotri S; Kost J; Langer R Int J Pharm; 2002 Mar; 235(1-2):35-42. PubMed ID: 11879737 [TBL] [Abstract][Full Text] [Related]
5. Sonophoresis. I. The use of high-frequency ultrasound to enhance transdermal drug delivery. Bommannan D; Okuyama H; Stauffer P; Guy RH Pharm Res; 1992 Apr; 9(4):559-64. PubMed ID: 1495903 [TBL] [Abstract][Full Text] [Related]
6. Effect of sonication parameters on transdermal delivery of insulin to hairless rats. Boucaud A; Garrigue MA; Machet L; Vaillant L; Patat F J Control Release; 2002 May; 81(1-2):113-9. PubMed ID: 11992684 [TBL] [Abstract][Full Text] [Related]
7. In vitro study of low-frequency ultrasound-enhanced transdermal transport of fentanyl and caffeine across human and hairless rat skin. Boucaud A; Machet L; Arbeille B; Machet MC; Sournac M; Mavon A; Patat F; Vaillant L Int J Pharm; 2001 Oct; 228(1-2):69-77. PubMed ID: 11576769 [TBL] [Abstract][Full Text] [Related]
8. Elucidation of the transport pathway in hairless rat skin enhanced by low-frequency sonophoresis based on the solute-water transport relationship and confocal microscopy. Morimoto Y; Mutoh M; Ueda H; Fang L; Hirayama K; Atobe M; Kobayashi D J Control Release; 2005 Apr; 103(3):587-97. PubMed ID: 15820406 [TBL] [Abstract][Full Text] [Related]
9. Acoustic cavitation as an enhancing mechanism of low-frequency sonophoresis for transdermal drug delivery. Ueda H; Mutoh M; Seki T; Kobayashi D; Morimoto Y Biol Pharm Bull; 2009 May; 32(5):916-20. PubMed ID: 19420764 [TBL] [Abstract][Full Text] [Related]
10. An explanation for the variation of the sonophoretic transdermal transport enhancement from drug to drug. Mitragotri S; Blankschtein D; Langer R J Pharm Sci; 1997 Oct; 86(10):1190-2. PubMed ID: 9344179 [TBL] [Abstract][Full Text] [Related]
11. Theoretical description of transdermal transport of hydrophilic permeants: application to low-frequency sonophoresis. Tang H; Mitragotri S; Blankschtein D; Langer R J Pharm Sci; 2001 May; 90(5):545-68. PubMed ID: 11288100 [TBL] [Abstract][Full Text] [Related]
12. Recent advances in ultrasound-based transdermal drug delivery. Seah BC; Teo BM Int J Nanomedicine; 2018; 13():7749-7763. PubMed ID: 30538456 [TBL] [Abstract][Full Text] [Related]
13. Transdermal drug delivery using ultrasound-theory, understanding and critical analysis. Sivakumar M; Tachibana K; Pandit AB; Yasui K; Tuziuti T; Towata A; Iida Y Cell Mol Biol (Noisy-le-grand); 2005 Sep; 51 Suppl():OL767-84. PubMed ID: 16171576 [TBL] [Abstract][Full Text] [Related]
14. Recent progress in transdermal sonophoresis. Ita K Pharm Dev Technol; 2017 Jun; 22(4):458-466. PubMed ID: 26608060 [TBL] [Abstract][Full Text] [Related]
15. Low frequency sonophoresis mediated transdermal and intradermal delivery of ketoprofen. Herwadkar A; Sachdeva V; Taylor LF; Silver H; Banga AK Int J Pharm; 2012 Feb; 423(2):289-96. PubMed ID: 22172289 [TBL] [Abstract][Full Text] [Related]
16. Sonophoresis with ultrasound-responsive liquid-core nuclei for transdermal drug delivery. Park D; Won J; Lee G; Lee Y; Kim CW; Seo J Skin Res Technol; 2022 Mar; 28(2):291-298. PubMed ID: 35034386 [TBL] [Abstract][Full Text] [Related]
17. Sonophoresis Using Ultrasound Contrast Agents: Dependence on Concentration. Park D; Song G; Jo Y; Won J; Son T; Cha O; Kim J; Jung B; Park H; Kim CW; Seo J PLoS One; 2016; 11(6):e0157707. PubMed ID: 27322539 [TBL] [Abstract][Full Text] [Related]
18. Description of transdermal transport of hydrophilic solutes during low-frequency sonophoresis based on a modified porous pathway model. Tezel A; Sens A; Mitragotri S J Pharm Sci; 2003 Feb; 92(2):381-93. PubMed ID: 12532387 [TBL] [Abstract][Full Text] [Related]
19. Sonophoresis. II. Examination of the mechanism(s) of ultrasound-enhanced transdermal drug delivery. Bommannan D; Menon GK; Okuyama H; Elias PM; Guy RH Pharm Res; 1992 Aug; 9(8):1043-7. PubMed ID: 1409375 [TBL] [Abstract][Full Text] [Related]
20. Bubble growth within the skin by rectified diffusion might play a significant role in sonophoresis. Lavon I; Grossman N; Kost J; Kimmel E; Enden G J Control Release; 2007 Feb; 117(2):246-55. PubMed ID: 17197050 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]