These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

267 related articles for article (PubMed ID: 8692734)

  • 21. Effects of low-frequency ultrasound on the transdermal permeation of mannitol: comparative studies with in vivo and in vitro skin.
    Tang H; Blankschtein D; Langer R
    J Pharm Sci; 2002 Aug; 91(8):1776-94. PubMed ID: 12115805
    [TBL] [Abstract][Full Text] [Related]  

  • 22. [The progress of research on low-frequency sonophoresis and its applications].
    Tu X; Yin Q; Zhang W; Huang H
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2008 Dec; 25(6):1474-8. PubMed ID: 19166235
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Permeability enhancement for transdermal delivery of large molecule using low-frequency sonophoresis combined with microneedles.
    Han T; Das DB
    J Pharm Sci; 2013 Oct; 102(10):3614-22. PubMed ID: 23873449
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Frequency and thermal effects on the enhancement of transdermal transport by sonophoresis.
    Merino G; Kalia YN; Delgado-Charro MB; Potts RO; Guy RH
    J Control Release; 2003 Feb; 88(1):85-94. PubMed ID: 12586506
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A theoretical analysis of low-frequency sonophoresis: dependence of transdermal transport pathways on frequency and energy density.
    Tezel A; Sens A; Mitragotri S
    Pharm Res; 2002 Dec; 19(12):1841-6. PubMed ID: 12523663
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Ultrasound and transdermal drug delivery.
    Lavon I; Kost J
    Drug Discov Today; 2004 Aug; 9(15):670-6. PubMed ID: 15279850
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Ultrasound-enhanced transdermal transport.
    Merino G; Kalia YN; Guy RH
    J Pharm Sci; 2003 Jun; 92(6):1125-37. PubMed ID: 12761802
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Enhanced Transdermal Drug Delivery by Sonophoresis and Simultaneous Application of Sonophoresis and Iontophoresis.
    Park J; Lee H; Lim GS; Kim N; Kim D; Kim YC
    AAPS PharmSciTech; 2019 Jan; 20(3):96. PubMed ID: 30694397
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Ultrasound mediated transdermal drug delivery.
    Azagury A; Khoury L; Enden G; Kost J
    Adv Drug Deliv Rev; 2014 Jun; 72():127-43. PubMed ID: 24463344
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effect of sonophoresis and chemical enhancers on testosterone transdermal delivery from solid lipid microparticles: an in vitro study.
    El-Kamel AH; Al-Fagih IM; Alsarra IA
    Curr Drug Deliv; 2008 Jan; 5(1):20-6. PubMed ID: 18220547
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Efficiency of low-frequency ultrasound sonophoresis in skin penetration of histamine: a randomized study in humans.
    Maruani A; Vierron E; Machet L; Giraudeau B; Boucaud A
    Int J Pharm; 2010 Jan; 385(1-2):37-41. PubMed ID: 19837146
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Low-frequency sonophoresis: a noninvasive method of drug delivery and diagnostics.
    Mitragotri S; Kost J
    Biotechnol Prog; 2000; 16(3):488-92. PubMed ID: 10835253
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The importance of microjet vs shock wave formation in sonophoresis.
    Wolloch L; Kost J
    J Control Release; 2010 Dec; 148(2):204-11. PubMed ID: 20655341
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Ultrasound-mediated transdermal transport of insulin in vitro through human skin using novel transducer designs.
    Smith NB; Lee S; Maione E; Roy RB; McElligott S; Shung KK
    Ultrasound Med Biol; 2003 Feb; 29(2):311-7. PubMed ID: 12659919
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A compact and low-frequency drive ultrasound transducer for facilitating cavitation-assisted drug permeation via skin.
    Yamamoto S; Sugita N; Tomioka K; Shinshi T
    Biomed Phys Eng Express; 2024 Sep; 10(6):. PubMed ID: 39214118
    [TBL] [Abstract][Full Text] [Related]  

  • 36. An investigation of the role of cavitation in low-frequency ultrasound-mediated transdermal drug transport.
    Tang H; Wang CC; Blankschtein D; Langer R
    Pharm Res; 2002 Aug; 19(8):1160-9. PubMed ID: 12240942
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Frequency dependence of sonophoresis.
    Tezel A; Sens A; Tuchscherer J; Mitragotri S
    Pharm Res; 2001 Dec; 18(12):1694-700. PubMed ID: 11785688
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Dendrimer-coupled sonophoresis-mediated transdermal drug-delivery system for diclofenac.
    Huang B; Dong WJ; Yang GY; Wang W; Ji CH; Zhou FN
    Drug Des Devel Ther; 2015; 9():3867-76. PubMed ID: 26229447
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A Conformable Ultrasound Patch for Cavitation-Enhanced Transdermal Cosmeceutical Delivery.
    Yu CC; Shah A; Amiri N; Marcus C; Nayeem MOG; Bhayadia AK; Karami A; Dagdeviren C
    Adv Mater; 2023 Jun; 35(23):e2300066. PubMed ID: 36934314
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Advances in Ultrasound Mediated Transdermal Drug Delivery.
    Daftardar S; Neupane R; Boddu Sai HS; Renukuntla J; Tiwari AK
    Curr Pharm Des; 2019; 25(4):413-423. PubMed ID: 30747058
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.