These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

267 related articles for article (PubMed ID: 8692734)

  • 61. Effect of Ultrasound Intensity and Mode on Piroxicam Transport Across Three-Dimensional Skin Equivalent Epiderm™.
    Alarjah MA
    Recent Pat Drug Deliv Formul; 2020; 14(1):75-83. PubMed ID: 32106808
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Low-frequency sonophoresis enhances rivastigmine permeation in vitro and in vivo.
    Yu ZW; Liang Y; Liang WQ
    Pharmazie; 2015 Jun; 70(6):379-80. PubMed ID: 26189298
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Effect of permeation enhancers on transdermal delivery of fluoxetine: in vitro and in vivo evaluation.
    Jung E; Kang YP; Yoon IS; Kim JS; Kwon SW; Chung SJ; Shim CK; Kim DD
    Int J Pharm; 2013 Nov; 456(2):362-9. PubMed ID: 24012861
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Determination of threshold energy dose for ultrasound-induced transdermal drug transport.
    Mitragotri S; Farrell J; Tang H; Terahara T; Kost J; Langer R
    J Control Release; 2000 Jan; 63(1-2):41-52. PubMed ID: 10640579
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Synergistic effect of low-frequency ultrasound and sodium lauryl sulfate on transdermal transport.
    Mitragotri S; Ray D; Farrell J; Tang H; Yu B; Kost J; Blankschtein D; Langer R
    J Pharm Sci; 2000 Jul; 89(7):892-900. PubMed ID: 10861590
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Influence of sonophoresis and chemical penetration enhancers on percutaneous transport of penbutolol sulfate.
    Ita KB; Popova IE
    Pharm Dev Technol; 2016 Dec; 21(8):990-995. PubMed ID: 26383739
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Penetration pathways induced by low-frequency sonophoresis with physical and chemical enhancers: iron oxide nanoparticles versus lanthanum nitrates.
    Lee SE; Choi KJ; Menon GK; Kim HJ; Choi EH; Ahn SK; Lee SH
    J Invest Dermatol; 2010 Apr; 130(4):1063-72. PubMed ID: 19940858
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Interactions of inertial cavitation bubbles with stratum corneum lipid bilayers during low-frequency sonophoresis.
    Tezel A; Mitragotri S
    Biophys J; 2003 Dec; 85(6):3502-12. PubMed ID: 14645045
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Permeation enhancer strategies in transdermal drug delivery.
    Marwah H; Garg T; Goyal AK; Rath G
    Drug Deliv; 2016; 23(2):564-78. PubMed ID: 25006687
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Cavitation-enhanced delivery of insulin in agar and porcine models of human skin.
    Feiszthuber H; Bhatnagar S; Gyöngy M; Coussios CC
    Phys Med Biol; 2015 Mar; 60(6):2421-34. PubMed ID: 25716689
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Evaluation of the porosity, the tortuosity, and the hindrance factor for the transdermal delivery of hydrophilic permeants in the context of the aqueous pore pathway hypothesis using dual-radiolabeled permeability experiments.
    Kushner J; Blankschtein D; Langer R
    J Pharm Sci; 2007 Dec; 96(12):3263-82. PubMed ID: 17887176
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Ultrasound-mediated transdermal drug delivery: mechanisms, scope, and emerging trends.
    Polat BE; Hart D; Langer R; Blankschtein D
    J Control Release; 2011 Jun; 152(3):330-48. PubMed ID: 21238514
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Sonophoresis using ultrasound contrast agents for transdermal drug delivery: an in vivo experimental study.
    Park D; Ryu H; Kim HS; Kim YS; Choi KS; Park H; Seo J
    Ultrasound Med Biol; 2012 Apr; 38(4):642-50. PubMed ID: 22341597
    [TBL] [Abstract][Full Text] [Related]  

  • 74. In vivo microdialysis for the investigation of drug levels in the dermis and the effect of barrier perturbation on cutaneous drug penetration. Studies in hairless rats and human subjects.
    Benfeldt E
    Acta Derm Venereol Suppl (Stockh); 1999; 206():1-59. PubMed ID: 10605601
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Investigation into the potential of low-frequency ultrasound facilitated topical delivery of Cyclosporin A.
    Liu H; Li S; Pan W; Wang Y; Han F; Yao H
    Int J Pharm; 2006 Dec; 326(1-2):32-8. PubMed ID: 16949776
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Transdermal drug delivery mediated by acoustic vortex beam.
    Li Y; Guo M; Guo G; Ma Q
    Ultrasonics; 2024 May; 140():107304. PubMed ID: 38537516
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Low-frequency sonophoresis: current status and future prospects.
    Ogura M; Paliwal S; Mitragotri S
    Adv Drug Deliv Rev; 2008 Jun; 60(10):1218-23. PubMed ID: 18450318
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Comparison of the effect of ultrasound and of chemical enhancers on transdermal permeation of caffeine and morphine through hairless mouse skin in vitro.
    Monti D; Giannelli R; Chetoni P; Burgalassi S
    Int J Pharm; 2001 Oct; 229(1-2):131-7. PubMed ID: 11604265
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Exploitation of sub-micron cavitation nuclei to enhance ultrasound-mediated transdermal transport and penetration of vaccines.
    Bhatnagar S; Kwan JJ; Shah AR; Coussios CC; Carlisle RC
    J Control Release; 2016 Sep; 238():22-30. PubMed ID: 27417040
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Reversible skin permeabilization for transdermal delivery of macromolecules.
    Prausnitz MR
    Crit Rev Ther Drug Carrier Syst; 1997; 14(4):455-83. PubMed ID: 9450177
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.