These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 8692891)

  • 1. Postembryonic segregation of the germ line in sea urchins in relation to indirect development.
    Ransick A; Cameron RA; Davidson EH
    Proc Natl Acad Sci U S A; 1996 Jun; 93(13):6759-63. PubMed ID: 8692891
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Small micromeres contribute to the germline in the sea urchin.
    Yajima M; Wessel GM
    Development; 2011 Jan; 138(2):237-43. PubMed ID: 21177341
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The fate of the small micromeres in sea urchin development.
    Pehrson JR; Cohen LH
    Dev Biol; 1986 Feb; 113(2):522-6. PubMed ID: 3512335
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Methods to label, isolate, and image sea urchin small micromeres, the primordial germ cells (PGCs).
    Campanale JP; Hamdoun A; Wessel GM; Su YH; Oulhen N
    Methods Cell Biol; 2019; 150():269-292. PubMed ID: 30777180
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Migration of sea urchin primordial germ cells.
    Campanale JP; Gökirmak T; Espinoza JA; Oulhen N; Wessel GM; Hamdoun A
    Dev Dyn; 2014 Jul; 243(7):917-27. PubMed ID: 24677545
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Micromere-derived signal regulates larval left-right polarity during sea urchin development.
    Kitazawa C; Amemiya S
    J Exp Zool A Ecol Genet Physiol; 2007 May; 307(5):249-62. PubMed ID: 17351911
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Early development of the feeding larva of the sea urchin Heliocidaris tuberculata: role of the small micromeres.
    Morris VB; Kable E; Koop D; Cisternas P; Byrne M
    Dev Genes Evol; 2019 Jan; 229(1):1-12. PubMed ID: 30446824
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Formation of the adult rudiment of sea urchins is influenced by thyroid hormones.
    Chino Y; Saito M; Yamasu K; Suyemitsu T; Ishihara K
    Dev Biol; 1994 Jan; 161(1):1-11. PubMed ID: 8293866
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Vasa protein expression is restricted to the small micromeres of the sea urchin, but is inducible in other lineages early in development.
    Voronina E; Lopez M; Juliano CE; Gustafson E; Song JL; Extavour C; George S; Oliveri P; McClay D; Wessel G
    Dev Biol; 2008 Feb; 314(2):276-86. PubMed ID: 18191830
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Localization and origins of juvenile skeletogenic cells in the sea urchin Lytechinuspictus.
    Tate HM; Barone V; Schrankel CS; Hamdoun A; Lyons DC
    Dev Biol; 2024 Oct; 514():12-27. PubMed ID: 38862087
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Expression of the Hox gene complex in the indirect development of a sea urchin.
    Arenas-Mena C; Martinez P; Cameron RA; Davidson EH
    Proc Natl Acad Sci U S A; 1998 Oct; 95(22):13062-7. PubMed ID: 9789041
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Role of the nanos homolog during sea urchin development.
    Fujii T; Sakamoto N; Ochiai H; Fujita K; Okamitsu Y; Sumiyoshi N; Minokawa T; Yamamoto T
    Dev Dyn; 2009 Oct; 238(10):2511-21. PubMed ID: 19705446
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nanos functions to maintain the fate of the small micromere lineage in the sea urchin embryo.
    Juliano CE; Yajima M; Wessel GM
    Dev Biol; 2010 Jan; 337(2):220-32. PubMed ID: 19878662
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Micromere formation and its evolutionary implications in the sea urchin.
    Emura N; Yajima M
    Curr Top Dev Biol; 2022; 146():211-238. PubMed ID: 35152984
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Programmed reduction of ABC transporter activity in sea urchin germline progenitors.
    Campanale JP; Hamdoun A
    Development; 2012 Feb; 139(4):783-92. PubMed ID: 22274698
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantitative analysis of metamorphosis induced by L-glutamine in embryos of the sea urchin, Hemicentrotus pulcherrimus.
    Yazaki I
    Zoolog Sci; 1995 Feb; 12(1):105-12. PubMed ID: 7795484
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Complete regulation of development throughout metamorphosis of sea urchin embryos devoid of macromeres.
    Amemiya S
    Dev Growth Differ; 1996 Oct; 38(5):465-476. PubMed ID: 37281784
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Unequal divisions at the third cleavage increase the number of primary mesenchyme cells in sea urchin embryos.
    Kominami T; Takaichi M
    Dev Growth Differ; 1998 Oct; 40(5):545-53. PubMed ID: 9783480
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genetic manipulation of the pigment pathway in a sea urchin reveals distinct lineage commitment prior to metamorphosis in the bilateral to radial body plan transition.
    Wessel GM; Kiyomoto M; Shen TL; Yajima M
    Sci Rep; 2020 Feb; 10(1):1973. PubMed ID: 32029769
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evolutionary and experimental change in egg volume, heterochrony of larval body and juvenile rudiment, and evolutionary reversibility in pluteus form.
    Bertram DF; Phillips NE; Strathmann RR
    Evol Dev; 2009; 11(6):728-39. PubMed ID: 19878294
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.