These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 8692905)

  • 1. Antifreeze glycoproteins inhibit leakage from liposomes during thermotropic phase transitions.
    Hays LM; Feeney RE; Crowe LM; Crowe JH; Oliver AE
    Proc Natl Acad Sci U S A; 1996 Jun; 93(13):6835-40. PubMed ID: 8692905
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Efficacy of antifreeze protein types in protecting liposome membrane integrity depends on phospholipid class.
    Wu Y; Fletcher GL
    Biochim Biophys Acta; 2001 Nov; 1524(1):11-6. PubMed ID: 11078953
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Antifreeze glycoproteins from antarctic notothenioid fishes fail to protect the rat cardiac explant during hypothermic and freezing preservation.
    Wang T; Zhu Q; Yang X; Layne JR; Devries AL
    Cryobiology; 1994 Apr; 31(2):185-92. PubMed ID: 8004999
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Antifreeze glycoproteins from the antarctic fish Dissostichus mawsoni studied by differential scanning calorimetry (DSC) in combination with nanolitre osmometry.
    Ramløv H; DeVries AL; Wilson PW
    Cryo Letters; 2005; 26(2):73-84. PubMed ID: 15897959
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nonhepatic origin of notothenioid antifreeze reveals pancreatic synthesis as common mechanism in polar fish freezing avoidance.
    Cheng CC; Cziko PA; Evans CW
    Proc Natl Acad Sci U S A; 2006 Jul; 103(27):10491-10496. PubMed ID: 16798878
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The cryoprotective effect of antifreeze glycopeptides from antarctic fishes.
    Rubinsky B; Arav A; Devries AL
    Cryobiology; 1992 Feb; 29(1):69-79. PubMed ID: 1606831
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Antifreeze proteins differentially affect model membranes during freezing.
    Tomczak MM; Hincha DK; Estrada SD; Feeney RE; Crowe JH
    Biochim Biophys Acta; 2001 Apr; 1511(2):255-63. PubMed ID: 11286968
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 'Antifreeze' glycoproteins from polar fish.
    Harding MM; Anderberg PI; Haymet AD
    Eur J Biochem; 2003 Apr; 270(7):1381-92. PubMed ID: 12653993
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Antifreeze glycoproteins: relationship between molecular weight, thermal hysteresis and the inhibition of leakage from liposomes during thermotropic phase transition.
    Wu Y; Banoub J; Goddard SV; Kao MH; Fletcher GL
    Comp Biochem Physiol B Biochem Mol Biol; 2001 Feb; 128(2):265-73. PubMed ID: 11207440
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effect of antifreeze glycopeptides on membrane potential changes at hypothermic temperatures.
    Rubinsky B; Arav A; Mattioli M; Devries AL
    Biochem Biophys Res Commun; 1990 Dec; 173(3):1369-74. PubMed ID: 2268338
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Antifreeze glycoproteins promote intracellular freezing of rat cardiomyocytes at high subzero temperatures.
    Mugnano JA; Wang T; Layne JR; DeVries AL; Lee RE
    Am J Physiol; 1995 Aug; 269(2 Pt 2):R474-9. PubMed ID: 7653673
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Membrane phase transition of intact human platelets: correlation with cold-induced activation.
    Tablin F; Oliver AE; Walker NJ; Crowe LM; Crowe JH
    J Cell Physiol; 1996 Aug; 168(2):305-13. PubMed ID: 8707866
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inhibition of bacterial ice nucleators by fish antifreeze glycoproteins.
    Parody-Morreale A; Murphy KP; Di Cera E; Fall R; DeVries AL; Gill SJ
    Nature; 1988 Jun; 333(6175):782-3. PubMed ID: 3386720
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Variation in blood serum antifreeze activity of Antarctic Trematomus fishes across habitat temperature and depth.
    Fields LG; DeVries AL
    Comp Biochem Physiol A Mol Integr Physiol; 2015 Jul; 185():43-50. PubMed ID: 25770668
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Factors affecting leakage of trapped solutes from phospholipid vesicles during thermotropic phase transitions.
    Hays LM; Crowe JH; Wolkers W; Rudenko S
    Cryobiology; 2001 Mar; 42(2):88-102. PubMed ID: 11448111
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Freezing avoidance and the distribution of antifreeze glycopeptides in body fluids and tissues of Antarctic fish.
    Ahlgren JA; Cheng CC; Schrag JD; DeVries AL
    J Exp Biol; 1988 Jul; 137():549-63. PubMed ID: 3209974
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Convergent evolution of antifreeze glycoproteins in Antarctic notothenioid fish and Arctic cod.
    Chen L; DeVries AL; Cheng CH
    Proc Natl Acad Sci U S A; 1997 Apr; 94(8):3817-22. PubMed ID: 9108061
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Antifreeze glycopeptides of the high-Antarctic silverfish Pleuragramma antarcticum (Notothenioidei).
    Wöhrmann AP
    Comp Biochem Physiol C Pharmacol Toxicol Endocrinol; 1995 May; 111(1):121-9. PubMed ID: 7656179
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Calorimetric analysis of antifreeze glycoproteins of the polar fish, Dissostichus mawsoni.
    Hansen TN; DeVries AL; Baust JG
    Biochim Biophys Acta; 1991 Aug; 1079(2):169-73. PubMed ID: 1911839
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Applications of type I antifreeze proteins: studies with model membranes & cryoprotectant properties.
    Inglis SR; Turner JJ; Harding MM
    Curr Protein Pept Sci; 2006 Dec; 7(6):509-22. PubMed ID: 17168784
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.