These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
186 related articles for article (PubMed ID: 8692969)
1. Critical contribution of beta chain residue 57 in peptide binding ability of both HLA-DR and -DQ molecules. Nepom BS; Nepom GT; Coleman M; Kwok WW Proc Natl Acad Sci U S A; 1996 Jul; 93(14):7202-6. PubMed ID: 8692969 [TBL] [Abstract][Full Text] [Related]
2. The P9 pocket of HLA-DQ2 (non-Aspbeta57) has no particular preference for negatively charged anchor residues found in other type 1 diabetes-predisposing non-Aspbeta57 MHC class II molecules. Quarsten H; Paulsen G; Johansen BH; Thorpe CJ; Holm A; Buus S; Sollid LM Int Immunol; 1998 Aug; 10(8):1229-36. PubMed ID: 9723710 [TBL] [Abstract][Full Text] [Related]
3. HLA-DQB1 codon 57 is critical for peptide binding and recognition. Kwok WW; Domeier ME; Johnson ML; Nepom GT; Koelle DM J Exp Med; 1996 Mar; 183(3):1253-8. PubMed ID: 8642268 [TBL] [Abstract][Full Text] [Related]
4. HLA-DQ polymorphisms are highly selective for peptide binding interactions. Kwok WW; Nepom GT; Raymond FC J Immunol; 1995 Sep; 155(5):2468-76. PubMed ID: 7650377 [TBL] [Abstract][Full Text] [Related]
5. Aspartic acid homozygosity at codon 57 of HLA-DQ beta is associated with susceptibility to pulmonary tuberculosis in Cambodia. Delgado JC; Baena A; Thim S; Goldfeld AE J Immunol; 2006 Jan; 176(2):1090-7. PubMed ID: 16393997 [TBL] [Abstract][Full Text] [Related]
6. Different modes of peptide interaction enable HLA-DQ and HLA-DR molecules to bind diverse peptide repertoires. Raddrizzani L; Sturniolo T; Guenot J; Bono E; Gallazzi F; Nagy ZA; Sinigaglia F; Hammer J J Immunol; 1997 Jul; 159(2):703-11. PubMed ID: 9218585 [TBL] [Abstract][Full Text] [Related]
7. Naturally processed peptides from two disease-resistance-associated HLA-DR13 alleles show related sequence motifs and the effects of the dimorphism at position 86 of the HLA-DR beta chain. Davenport MP; Quinn CL; Chicz RM; Green BN; Willis AC; Lane WS; Bell JI; Hill AV Proc Natl Acad Sci U S A; 1995 Jul; 92(14):6567-71. PubMed ID: 7604034 [TBL] [Abstract][Full Text] [Related]
8. A new model defines the minimal set of polymorphism in HLA-DQ and -DR that determines susceptibility and resistance to autoimmune diabetes. Parry CS; Brooks BR Biol Direct; 2008 Oct; 3():42. PubMed ID: 18854049 [TBL] [Abstract][Full Text] [Related]
9. Peptide binding predictions for HLA DR, DP and DQ molecules. Wang P; Sidney J; Kim Y; Sette A; Lund O; Nielsen M; Peters B BMC Bioinformatics; 2010 Nov; 11():568. PubMed ID: 21092157 [TBL] [Abstract][Full Text] [Related]
10. Use of eluted peptide sequence data to identify the binding characteristics of peptides to the insulin-dependent diabetes susceptibility allele HLA-DQ8 (DQ 3.2). Godkin A; Friede T; Davenport M; Stevanovic S; Willis A; Jewell D; Hill A; Rammensee HG Int Immunol; 1997 Jun; 9(6):905-11. PubMed ID: 9199974 [TBL] [Abstract][Full Text] [Related]
11. NetMHCIIpan-3.0, a common pan-specific MHC class II prediction method including all three human MHC class II isotypes, HLA-DR, HLA-DP and HLA-DQ. Karosiene E; Rasmussen M; Blicher T; Lund O; Buus S; Nielsen M Immunogenetics; 2013 Oct; 65(10):711-24. PubMed ID: 23900783 [TBL] [Abstract][Full Text] [Related]
12. Critical residues on HLA-DRB1*0402 HV3 peptide for HLA-DQ8-restricted immunogenicity: implications for rheumatoid arthritis predisposition. Zanelli E; Krco CJ; David CS J Immunol; 1997 Apr; 158(7):3545-51. PubMed ID: 9120317 [TBL] [Abstract][Full Text] [Related]
13. Importance of HLA-DQ and HLA-DP polymorphisms in cytokine responses to naturally processed HLA-DR-derived measles virus peptides. Ovsyannikova IG; Vierkant RA; Poland GA Vaccine; 2006 Jun; 24(25):5381-9. PubMed ID: 16714073 [TBL] [Abstract][Full Text] [Related]
14. Both alpha and beta chain polymorphisms determine the specificity of the disease-associated HLA-DQ2 molecules, with beta chain residues being most influential. Johansen BH; Jensen T; Thorpe CJ; Vartdal F; Thorsby E; Sollid LM Immunogenetics; 1996; 45(2):142-50. PubMed ID: 8952964 [TBL] [Abstract][Full Text] [Related]
15. Revisiting the structural basis and energetic landscape of susceptibility difference between HLA isotypes to allergic rhinitis. Mao XL; Zhu F; Pan ZH; Wu GM; Zhu HY Comput Biol Chem; 2016 Oct; 64():210-216. PubMed ID: 27433817 [TBL] [Abstract][Full Text] [Related]
16. Analysis of the nucleotide sequence variation of the antigen-binding domain of DR alpha and DQ alpha molecules as related to the evolution of papillomavirus-induced warts in rabbits. Han R; Breitburd F; Marche PN; Orth G J Invest Dermatol; 1994 Sep; 103(3):376-80. PubMed ID: 7915746 [TBL] [Abstract][Full Text] [Related]
17. Novel structural features of the human histocompatibility molecules HLA-DQ as revealed by modeling based on the published structure of the related molecule HLA-DR. Paliakasis K; Routsias J; Petratos K; Ouzounis C; Kokkinidis M; Papadopoulos GK J Struct Biol; 1996; 117(2):145-63. PubMed ID: 8931340 [TBL] [Abstract][Full Text] [Related]
18. Substitution of aspartic acid at beta57 with alanine alters MHC class II peptide binding activity but not protein stability: HLA-DQ (alpha1*0201, beta1*0302) and (alpha1*0201, beta1*0303). Sato AK; Sturniolo T; Sinigaglia F; Stern LJ Hum Immunol; 1999 Dec; 60(12):1227-36. PubMed ID: 10626736 [TBL] [Abstract][Full Text] [Related]
19. Naturally processed peptides from HLA-DQ7 (alpha1*0501-beta1*0301): influence of both alpha and beta chain polymorphism in the HLA-DQ peptide binding specificity. Khalil-Daher I; Boisgérault F; Feugeas JP; Tieng V; Toubert A; Charron D Eur J Immunol; 1998 Nov; 28(11):3840-9. PubMed ID: 9842927 [TBL] [Abstract][Full Text] [Related]
20. Pool sequencing of natural HLA-DR, DQ, and DP ligands reveals detailed peptide motifs, constraints of processing, and general rules. Falk K; Rötzschke O; Stevanović S; Jung G; Rammensee HG Immunogenetics; 1994; 39(4):230-42. PubMed ID: 8119729 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]