These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

71 related articles for article (PubMed ID: 8694429)

  • 41. Lesions of the mammillary body region alter hippocampal movement signals and theta frequency: implications for path integration models.
    Sharp PE; Koester K
    Hippocampus; 2008; 18(9):862-78. PubMed ID: 18702112
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The effect of descending theta rhythmic input from the septohippocampal system on firing in the supramammillary nucleus.
    Kocsis B
    Brain Res; 2006 May; 1086(1):92-7. PubMed ID: 16616733
    [TBL] [Abstract][Full Text] [Related]  

  • 43. [Effect of electric stimulation of the septum of the rabbit brain on subiculum cells with different types of spontaneous activity].
    Stafekhina VS
    Neirofiziologiia; 1985; 17(3):326-33. PubMed ID: 4022181
    [TBL] [Abstract][Full Text] [Related]  

  • 44. 5-HT1A agonists induce hippocampal theta activity in freely moving cats: role of presynaptic 5-HT1A receptors.
    Marrosu F; Fornal CA; Metzler CW; Jacobs BL
    Brain Res; 1996 Nov; 739(1-2):192-200. PubMed ID: 8955939
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Temporal correlation between auditory neurons and the hippocampal theta rhythm induced by novel stimulations in awake guinea pigs.
    Liberman T; Velluti RA; Pedemonte M
    Brain Res; 2009 Nov; 1298():70-7. PubMed ID: 19716364
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Novelty-induced correlation between visual neurons and the hippocampal theta rhythm in sleep and wakefulness.
    Pedemonte M; Gambini JP; Velluti RA
    Brain Res; 2005 Nov; 1062(1-2):9-15. PubMed ID: 16248987
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Perception of Impossible Scenes Reveals Differential Hippocampal and Parahippocampal Place Area Contributions to Spatial Coherency.
    Douglas D; Thavabalasingam S; Chorghay Z; O'Neil EB; Barense MD; Lee AC
    Hippocampus; 2017 Jan; 27(1):61-76. PubMed ID: 27770465
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Theta burst stimulation improves overt visual search in spatial neglect independently of attentional load.
    Cazzoli D; Rosenthal CR; Kennard C; Zito GA; Hopfner S; Müri RM; Nyffeler T
    Cortex; 2015 Dec; 73():317-29. PubMed ID: 26547867
    [TBL] [Abstract][Full Text] [Related]  

  • 49. A review of the hippocampal place cells.
    O'Keefe J
    Prog Neurobiol; 1979; 13(4):419-39. PubMed ID: 396576
    [No Abstract]   [Full Text] [Related]  

  • 50. Commanding the direction of passive whole-body rotations facilitates egocentric spatial updating.
    Féry YA; Magnac R; Israël I
    Cognition; 2004 Mar; 91(2):B1-10. PubMed ID: 14738773
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Eye movements and hippocampal theta activity in rats.
    Sano K; Iwahara S; Senba K; Sano A; Yamazaki S
    Electroencephalogr Clin Neurophysiol; 1973 Dec; 35(6):621-5. PubMed ID: 4128157
    [No Abstract]   [Full Text] [Related]  

  • 52. Decrement versions of the Broca-Sulzer effect and its spatial analogue.
    Björklund RA; Magnussen S
    Vision Res; 1979; 19(2):155-7. PubMed ID: 425334
    [No Abstract]   [Full Text] [Related]  

  • 53. Contrasting development of visually triggered and guided movements in kittens with respect to interocular and interlimb equivalence.
    Hein A; Diamond RM
    J Comp Physiol Psychol; 1971 Aug; 76(2):219-24. PubMed ID: 5159007
    [No Abstract]   [Full Text] [Related]  

  • 54. The various movements of the human eye on rotation about different axes.
    JONGKEES LB; HULK J
    Acta Otolaryngol; 1951 Jun; 38(3):274-80. PubMed ID: 14856658
    [No Abstract]   [Full Text] [Related]  

  • 55. Oscillations Go the Distance: Low-Frequency Human Hippocampal Oscillations Code Spatial Distance in the Absence of Sensory Cues during Teleportation.
    Vass LK; Copara MS; Seyal M; Shahlaie K; Farias ST; Shen PY; Ekstrom AD
    Neuron; 2016 Mar; 89(6):1180-1186. PubMed ID: 26924436
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Vestibular pathways involved in cognition.
    Hitier M; Besnard S; Smith PF
    Front Integr Neurosci; 2014; 8():59. PubMed ID: 25100954
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Vestibular activity and cognitive development in children: perspectives.
    Wiener-Vacher SR; Hamilton DA; Wiener SI
    Front Integr Neurosci; 2013; 7():92. PubMed ID: 24376403
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Spatially selective reward site responses in tonically active neurons of the nucleus accumbens in behaving rats.
    Mulder AB; Shibata R; Trullier O; Wiener SI
    Exp Brain Res; 2005 May; 163(1):32-43. PubMed ID: 15654593
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Whole-body rotations enhance hippocampal theta rhythmic slow activity in awake rats passively transported on a mobile robot.
    Gavrilov VV; Wiener SI; Berthoz A
    Ann N Y Acad Sci; 1996 Jun; 781():385-98. PubMed ID: 8694429
    [No Abstract]   [Full Text] [Related]  

  • 60. Enhanced hippocampal theta EEG during whole body rotations in awake restrained rats.
    Gavrilov VV; Wiener SI; Berthoz A
    Neurosci Lett; 1995 Sep; 197(3):239-41. PubMed ID: 8552308
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.