These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
102 related articles for article (PubMed ID: 8694437)
1. Transmission between the type I hair cell and its calyx ending. Goldberg JM Ann N Y Acad Sci; 1996 Jun; 781():474-88. PubMed ID: 8694437 [TBL] [Abstract][Full Text] [Related]
2. Theoretical analysis of intercellular communication between the vestibular type I hair cell and its calyx ending. Goldberg JM J Neurophysiol; 1996 Sep; 76(3):1942-57. PubMed ID: 8890305 [TBL] [Abstract][Full Text] [Related]
3. Synaptic cleft microenvironment influences potassium permeation and synaptic transmission in hair cells surrounded by calyx afferents in the turtle. Contini D; Holstein GR; Art JJ J Physiol; 2020 Feb; 598(4):853-889. PubMed ID: 31623011 [TBL] [Abstract][Full Text] [Related]
4. Accumulation of K Contini D; Price SD; Art JJ J Physiol; 2017 Feb; 595(3):777-803. PubMed ID: 27633787 [TBL] [Abstract][Full Text] [Related]
5. Potassium accumulation between type I hair cells and calyx terminals in mouse crista. Lim R; Kindig AE; Donne SW; Callister RJ; Brichta AM Exp Brain Res; 2011 May; 210(3-4):607-21. PubMed ID: 21350807 [TBL] [Abstract][Full Text] [Related]
6. Nonquantal transmission at the vestibular hair cell-calyx synapse: K Govindaraju AC; Quraishi IH; Lysakowski A; Eatock RA; Raphael RM Proc Natl Acad Sci U S A; 2023 Jan; 120(2):e2207466120. PubMed ID: 36595693 [TBL] [Abstract][Full Text] [Related]
7. Intercellular K⁺ accumulation depolarizes Type I vestibular hair cells and their associated afferent nerve calyx. Contini D; Zampini V; Tavazzani E; Magistretti J; Russo G; Prigioni I; Masetto S Neuroscience; 2012 Dec; 227():232-46. PubMed ID: 23032932 [TBL] [Abstract][Full Text] [Related]
8. K Spaiardi P; Tavazzani E; Manca M; Russo G; Prigioni I; Biella G; Giunta R; Johnson SL; Marcotti W; Masetto S Neuroscience; 2020 Feb; 426():69-86. PubMed ID: 31846752 [TBL] [Abstract][Full Text] [Related]
9. Voltage-gated calcium channel currents in type I and type II hair cells isolated from the rat crista. Bao H; Wong WH; Goldberg JM; Eatock RA J Neurophysiol; 2003 Jul; 90(1):155-64. PubMed ID: 12843307 [TBL] [Abstract][Full Text] [Related]
10. Expression of hyperpolarization-activated current ( Meredith FL; Vu TA; Gehrke B; Benke TA; Dondzillo A; Rennie KJ J Neurophysiol; 2023 Jun; 129(6):1468-1481. PubMed ID: 37198134 [TBL] [Abstract][Full Text] [Related]
11. Evidence That Ultrafast Nonquantal Transmission Underlies Synchronized Vestibular Action Potential Generation. Pastras CJ; Curthoys IS; Asadnia M; McAlpine D; Rabbitt RD; Brown DJ J Neurosci; 2023 Oct; 43(43):7149-7157. PubMed ID: 37775302 [TBL] [Abstract][Full Text] [Related]
12. Quantal and nonquantal transmission in calyx-bearing fibers of the turtle posterior crista. Holt JC; Chatlani S; Lysakowski A; Goldberg JM J Neurophysiol; 2007 Sep; 98(3):1083-101. PubMed ID: 17596419 [TBL] [Abstract][Full Text] [Related]
15. The receptor potential in type I and type II vestibular system hair cells: a model analysis. Soto E; Vega R; Budelli R Hear Res; 2002 Mar; 165(1-2):35-47. PubMed ID: 12031513 [TBL] [Abstract][Full Text] [Related]
16. Ultrastructural analysis of the cristae ampullares in the squirrel monkey (Saimiri sciureus). Lysakowski A; Goldberg JM J Comp Neurol; 2008 Nov; 511(1):47-64. PubMed ID: 18729176 [TBL] [Abstract][Full Text] [Related]