These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
89 related articles for article (PubMed ID: 8694503)
1. 31P MRS of human tumor cells: effects of culture media and conditions on phospholipid metabolite concentrations. Franks SE; Kuesel AC; Lutz NW; Hull WE Anticancer Res; 1996; 16(3B):1365-74. PubMed ID: 8694503 [TBL] [Abstract][Full Text] [Related]
2. Metabolic signatures associated with a NAD synthesis inhibitor-induced tumor apoptosis identified by 1H-decoupled-31P magnetic resonance spectroscopy. Muruganandham M; Alfieri AA; Matei C; Chen Y; Sukenick G; Schemainda I; Hasmann M; Saltz LB; Koutcher JA Clin Cancer Res; 2005 May; 11(9):3503-13. PubMed ID: 15867253 [TBL] [Abstract][Full Text] [Related]
3. Noninvasive magnetic resonance spectroscopic pharmacodynamic markers of the choline kinase inhibitor MN58b in human carcinoma models. Al-Saffar NM; Troy H; Ramírez de Molina A; Jackson LE; Madhu B; Griffiths JR; Leach MO; Workman P; Lacal JC; Judson IR; Chung YL Cancer Res; 2006 Jan; 66(1):427-34. PubMed ID: 16397258 [TBL] [Abstract][Full Text] [Related]
4. The influence of medium formulation on phosphomonoester and UDP-hexose levels in cultured human colon tumor cells as observed by 31P NMR spectroscopy. Shedd SF; Lutz NW; Hull WE NMR Biomed; 1993; 6(4):254-63. PubMed ID: 8217527 [TBL] [Abstract][Full Text] [Related]
5. Levels of phospholipid metabolites in breast cancer cells treated with antimitotic drugs: a 31P-magnetic resonance spectroscopy study. Sterin M; Cohen JS; Mardor Y; Berman E; Ringel I Cancer Res; 2001 Oct; 61(20):7536-43. PubMed ID: 11606391 [TBL] [Abstract][Full Text] [Related]
6. Regulation of the cytidine phospholipid pathways in human cancer cells and effects of 1-beta-D-arabinofuranosylcytosine: a noninvasive 31P nuclear magnetic resonance study. Daly PF; Zugmaier G; Sandler D; Carpen M; Myers CE; Cohen JS Cancer Res; 1990 Feb; 50(3):552-7. PubMed ID: 2153442 [TBL] [Abstract][Full Text] [Related]
7. Relationship between 31P metabolites and oncolytic viral therapy sensitivity in human colorectal cancer xenografts. Silberhumer GR; Zakian K; Malhotra S; Brader P; Gönen M; Koutcher J; Fong Y Br J Surg; 2009 Jul; 96(7):809-16. PubMed ID: 19526622 [TBL] [Abstract][Full Text] [Related]
9. Variations in energy and phospholipid metabolism in normal and cancer human mammary epithelial cells. Ting YL; Sherr D; Degani H Anticancer Res; 1996; 16(3B):1381-8. PubMed ID: 8694505 [TBL] [Abstract][Full Text] [Related]
10. Changes in phosphate metabolism in thymoma cells suggest mechanisms for resistance to dexamethasone-induced apoptosis. A 31P NMR spectroscopic study of cell extracts. Lutz NW; Tome ME; Aiken NR; Briehl MM NMR Biomed; 2002 Aug; 15(5):356-66. PubMed ID: 12203227 [TBL] [Abstract][Full Text] [Related]
11. 31P NMR studies of cultured human tumor cells. Influence of pH on phospholipid metabolite levels and the detection of cytidine 5'-diphosphate choline. Kuesel AC; Graschew G; Hull WE; Lorenz W; Thielmann HW NMR Biomed; 1990 Apr; 3(2):78-89. PubMed ID: 2390457 [TBL] [Abstract][Full Text] [Related]
12. Melanoma tumors acquire a new phospholipid metabolism phenotype under cystemustine as revealed by high-resolution magic angle spinning proton nuclear magnetic resonance spectroscopy of intact tumor samples. Morvan D; Demidem A; Papon J; De Latour M; Madelmont JC Cancer Res; 2002 Mar; 62(6):1890-7. PubMed ID: 11912170 [TBL] [Abstract][Full Text] [Related]
13. Role of nuclear magnetic resonance spectroscopy (MRS) in cancer diagnosis and treatment: 31P, 23Na, and 1H MRS studies of three models of pancreatic cancer. Kaplan O; Kushnir T; Askenazy N; Knubovets T; Navon G Cancer Res; 1997 Apr; 57(8):1452-9. PubMed ID: 9108445 [TBL] [Abstract][Full Text] [Related]
14. Phospholipid metabolites in 1H-decoupled 31P MRS in vivo in human cancer: implications for experimental models and clinical studies. Negendank W; Li CW; Padavic-Shaller K; Murphy-Boesch J; Brown TR Anticancer Res; 1996; 16(3B):1539-44. PubMed ID: 8694523 [TBL] [Abstract][Full Text] [Related]
15. Effects of abstinence from alcohol on the broad phospholipid signal in human brain: an in vivo 31P magnetic resonance spectroscopy study. Estilaei MR; Matson GB; Payne GS; Leach MO; Fein G; Meyerhoff DJ Alcohol Clin Exp Res; 2001 Aug; 25(8):1213-20. PubMed ID: 11505053 [TBL] [Abstract][Full Text] [Related]
16. Effects of the putative phospholipid precursors, inositol, choline, serine and ethanolamine, on formation and expansion of rabbit blastocysts in vitro. Kane MT J Reprod Fertil; 1989 Sep; 87(1):275-9. PubMed ID: 2516133 [TBL] [Abstract][Full Text] [Related]
17. Metabolic markers of breast cancer: enhanced choline metabolism and reduced choline-ether-phospholipid synthesis. Katz-Brull R; Seger D; Rivenson-Segal D; Rushkin E; Degani H Cancer Res; 2002 Apr; 62(7):1966-70. PubMed ID: 11929812 [TBL] [Abstract][Full Text] [Related]
18. Effects of chronic alcohol consumption on the broad phospholipid signal in human brain: an in vivo 31P MRS study. Estilaei MR; Matson GB; Payne GS; Leach MO; Fein G; Meyerhoff DJ Alcohol Clin Exp Res; 2001 Jan; 25(1):89-97. PubMed ID: 11198719 [TBL] [Abstract][Full Text] [Related]
19. Molecular causes of the aberrant choline phospholipid metabolism in breast cancer. Glunde K; Jie C; Bhujwalla ZM Cancer Res; 2004 Jun; 64(12):4270-6. PubMed ID: 15205341 [TBL] [Abstract][Full Text] [Related]