BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 8694505)

  • 1. Variations in energy and phospholipid metabolism in normal and cancer human mammary epithelial cells.
    Ting YL; Sherr D; Degani H
    Anticancer Res; 1996; 16(3B):1381-8. PubMed ID: 8694505
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Metabolic markers of breast cancer: enhanced choline metabolism and reduced choline-ether-phospholipid synthesis.
    Katz-Brull R; Seger D; Rivenson-Segal D; Rushkin E; Degani H
    Cancer Res; 2002 Apr; 62(7):1966-70. PubMed ID: 11929812
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular causes of the aberrant choline phospholipid metabolism in breast cancer.
    Glunde K; Jie C; Bhujwalla ZM
    Cancer Res; 2004 Jun; 64(12):4270-6. PubMed ID: 15205341
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pyruvate utilization, phosphocholine and adenosine triphosphate (ATP) are markers of human breast tumor progression: a 31P- and 13C-nuclear magnetic resonance (NMR) spectroscopy study.
    Singer S; Souza K; Thilly WG
    Cancer Res; 1995 Nov; 55(22):5140-5. PubMed ID: 7585561
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Levels of phospholipid metabolites in breast cancer cells treated with antimitotic drugs: a 31P-magnetic resonance spectroscopy study.
    Sterin M; Cohen JS; Mardor Y; Berman E; Ringel I
    Cancer Res; 2001 Oct; 61(20):7536-43. PubMed ID: 11606391
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Metabolic and morphological differences between rapidly proliferating cancerous and normal breast epithelial cells.
    Meadows AL; Kong B; Berdichevsky M; Roy S; Rosiva R; Blanch HW; Clark DS
    Biotechnol Prog; 2008; 24(2):334-41. PubMed ID: 18307352
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Malignant transformation alters membrane choline phospholipid metabolism of human mammary epithelial cells.
    Aboagye EO; Bhujwalla ZM
    Cancer Res; 1999 Jan; 59(1):80-4. PubMed ID: 9892190
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Human breast cancer cells and normal mammary epithelial cells: retinol metabolism and growth inhibition by the retinol metabolite 4-oxoretinol.
    Chen AC; Guo X; Derguini F; Gudas LJ
    Cancer Res; 1997 Oct; 57(20):4642-51. PubMed ID: 9377581
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Glucose metabolism in drug-sensitive and drug-resistant human breast cancer cells monitored by magnetic resonance spectroscopy.
    Lyon RC; Cohen JS; Faustino PJ; Megnin F; Myers CE
    Cancer Res; 1988 Feb; 48(4):870-7. PubMed ID: 3338082
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Differences in phosphate metabolite levels in drug-sensitive and -resistant human breast cancer cell lines determined by 31P magnetic resonance spectroscopy.
    Cohen JS; Lyon RC; Chen C; Faustino PJ; Batist G; Shoemaker M; Rubalcaba E; Cowan KH
    Cancer Res; 1986 Aug; 46(8):4087-90. PubMed ID: 3731076
    [TBL] [Abstract][Full Text] [Related]  

  • 11. AP-1 blockade inhibits the growth of normal and malignant breast cells.
    Ludes-Meyers JH; Liu Y; Muñoz-Medellin D; Hilsenbeck SG; Brown PH
    Oncogene; 2001 May; 20(22):2771-80. PubMed ID: 11420689
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Overexpression of p27Kip1 inhibits the growth of both normal and transformed human mammary epithelial cells.
    Sgambato A; Zhang YJ; Ciaparrone M; Soh JW; Cittadini A; Santella RM; Weinstein IB
    Cancer Res; 1998 Aug; 58(15):3448-54. PubMed ID: 9699679
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tumor necrosis factor alpha and interleukin 11 secreted by malignant breast epithelial cells inhibit adipocyte differentiation by selectively down-regulating CCAAT/enhancer binding protein alpha and peroxisome proliferator-activated receptor gamma: mechanism of desmoplastic reaction.
    Meng L; Zhou J; Sasano H; Suzuki T; Zeitoun KM; Bulun SE
    Cancer Res; 2001 Mar; 61(5):2250-5. PubMed ID: 11280794
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Regulation of the cytidine phospholipid pathways in human cancer cells and effects of 1-beta-D-arabinofuranosylcytosine: a noninvasive 31P nuclear magnetic resonance study.
    Daly PF; Zugmaier G; Sandler D; Carpen M; Myers CE; Cohen JS
    Cancer Res; 1990 Feb; 50(3):552-7. PubMed ID: 2153442
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Estrogen-induced keratinocyte growth factor mRNA expression in normal and cancerous human breast cells.
    Zhang Y; Sugimoto Y; Kulp SK; Farrar WB; Brueggemeier RW; Lin YC
    Oncol Rep; 1998; 5(3):577-83. PubMed ID: 9538155
    [TBL] [Abstract][Full Text] [Related]  

  • 16. 31P MRS of human tumor cells: effects of culture media and conditions on phospholipid metabolite concentrations.
    Franks SE; Kuesel AC; Lutz NW; Hull WE
    Anticancer Res; 1996; 16(3B):1365-74. PubMed ID: 8694503
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Glycolysis as a metabolic marker in orthotopic breast cancer, monitored by in vivo (13)C MRS.
    Rivenzon-Segal D; Margalit R; Degani H
    Am J Physiol Endocrinol Metab; 2002 Oct; 283(4):E623-30. PubMed ID: 12217878
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synergistic stimulation of MUC1 expression in normal breast epithelia and breast cancer cells by interferon-gamma and tumor necrosis factor-alpha.
    Lagow EL; Carson DD
    J Cell Biochem; 2002; 86(4):759-72. PubMed ID: 12210742
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Kinetics of choline transport and phosphorylation in human breast cancer cells; NMR application of the zero trans method.
    Katz-Brull R; Degani H
    Anticancer Res; 1996; 16(3B):1375-80. PubMed ID: 8694504
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Retinoic acid induces expression of the interleukin-1beta gene in cultured normal human mammary epithelial cells and in human breast carcinoma lines.
    Liu L; Gudas LJ
    J Cell Physiol; 2002 Nov; 193(2):244-52. PubMed ID: 12385002
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.