These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
120 related articles for article (PubMed ID: 8694505)
1. Variations in energy and phospholipid metabolism in normal and cancer human mammary epithelial cells. Ting YL; Sherr D; Degani H Anticancer Res; 1996; 16(3B):1381-8. PubMed ID: 8694505 [TBL] [Abstract][Full Text] [Related]
2. Metabolic markers of breast cancer: enhanced choline metabolism and reduced choline-ether-phospholipid synthesis. Katz-Brull R; Seger D; Rivenson-Segal D; Rushkin E; Degani H Cancer Res; 2002 Apr; 62(7):1966-70. PubMed ID: 11929812 [TBL] [Abstract][Full Text] [Related]
3. Molecular causes of the aberrant choline phospholipid metabolism in breast cancer. Glunde K; Jie C; Bhujwalla ZM Cancer Res; 2004 Jun; 64(12):4270-6. PubMed ID: 15205341 [TBL] [Abstract][Full Text] [Related]
4. Pyruvate utilization, phosphocholine and adenosine triphosphate (ATP) are markers of human breast tumor progression: a 31P- and 13C-nuclear magnetic resonance (NMR) spectroscopy study. Singer S; Souza K; Thilly WG Cancer Res; 1995 Nov; 55(22):5140-5. PubMed ID: 7585561 [TBL] [Abstract][Full Text] [Related]
5. Levels of phospholipid metabolites in breast cancer cells treated with antimitotic drugs: a 31P-magnetic resonance spectroscopy study. Sterin M; Cohen JS; Mardor Y; Berman E; Ringel I Cancer Res; 2001 Oct; 61(20):7536-43. PubMed ID: 11606391 [TBL] [Abstract][Full Text] [Related]
6. Metabolic and morphological differences between rapidly proliferating cancerous and normal breast epithelial cells. Meadows AL; Kong B; Berdichevsky M; Roy S; Rosiva R; Blanch HW; Clark DS Biotechnol Prog; 2008; 24(2):334-41. PubMed ID: 18307352 [TBL] [Abstract][Full Text] [Related]
7. Malignant transformation alters membrane choline phospholipid metabolism of human mammary epithelial cells. Aboagye EO; Bhujwalla ZM Cancer Res; 1999 Jan; 59(1):80-4. PubMed ID: 9892190 [TBL] [Abstract][Full Text] [Related]
8. Human breast cancer cells and normal mammary epithelial cells: retinol metabolism and growth inhibition by the retinol metabolite 4-oxoretinol. Chen AC; Guo X; Derguini F; Gudas LJ Cancer Res; 1997 Oct; 57(20):4642-51. PubMed ID: 9377581 [TBL] [Abstract][Full Text] [Related]
9. Glucose metabolism in drug-sensitive and drug-resistant human breast cancer cells monitored by magnetic resonance spectroscopy. Lyon RC; Cohen JS; Faustino PJ; Megnin F; Myers CE Cancer Res; 1988 Feb; 48(4):870-7. PubMed ID: 3338082 [TBL] [Abstract][Full Text] [Related]
10. Differences in phosphate metabolite levels in drug-sensitive and -resistant human breast cancer cell lines determined by 31P magnetic resonance spectroscopy. Cohen JS; Lyon RC; Chen C; Faustino PJ; Batist G; Shoemaker M; Rubalcaba E; Cowan KH Cancer Res; 1986 Aug; 46(8):4087-90. PubMed ID: 3731076 [TBL] [Abstract][Full Text] [Related]
11. AP-1 blockade inhibits the growth of normal and malignant breast cells. Ludes-Meyers JH; Liu Y; Muñoz-Medellin D; Hilsenbeck SG; Brown PH Oncogene; 2001 May; 20(22):2771-80. PubMed ID: 11420689 [TBL] [Abstract][Full Text] [Related]
12. Overexpression of p27Kip1 inhibits the growth of both normal and transformed human mammary epithelial cells. Sgambato A; Zhang YJ; Ciaparrone M; Soh JW; Cittadini A; Santella RM; Weinstein IB Cancer Res; 1998 Aug; 58(15):3448-54. PubMed ID: 9699679 [TBL] [Abstract][Full Text] [Related]
13. Tumor necrosis factor alpha and interleukin 11 secreted by malignant breast epithelial cells inhibit adipocyte differentiation by selectively down-regulating CCAAT/enhancer binding protein alpha and peroxisome proliferator-activated receptor gamma: mechanism of desmoplastic reaction. Meng L; Zhou J; Sasano H; Suzuki T; Zeitoun KM; Bulun SE Cancer Res; 2001 Mar; 61(5):2250-5. PubMed ID: 11280794 [TBL] [Abstract][Full Text] [Related]
14. Regulation of the cytidine phospholipid pathways in human cancer cells and effects of 1-beta-D-arabinofuranosylcytosine: a noninvasive 31P nuclear magnetic resonance study. Daly PF; Zugmaier G; Sandler D; Carpen M; Myers CE; Cohen JS Cancer Res; 1990 Feb; 50(3):552-7. PubMed ID: 2153442 [TBL] [Abstract][Full Text] [Related]
15. Estrogen-induced keratinocyte growth factor mRNA expression in normal and cancerous human breast cells. Zhang Y; Sugimoto Y; Kulp SK; Farrar WB; Brueggemeier RW; Lin YC Oncol Rep; 1998; 5(3):577-83. PubMed ID: 9538155 [TBL] [Abstract][Full Text] [Related]
16. 31P MRS of human tumor cells: effects of culture media and conditions on phospholipid metabolite concentrations. Franks SE; Kuesel AC; Lutz NW; Hull WE Anticancer Res; 1996; 16(3B):1365-74. PubMed ID: 8694503 [TBL] [Abstract][Full Text] [Related]
17. Glycolysis as a metabolic marker in orthotopic breast cancer, monitored by in vivo (13)C MRS. Rivenzon-Segal D; Margalit R; Degani H Am J Physiol Endocrinol Metab; 2002 Oct; 283(4):E623-30. PubMed ID: 12217878 [TBL] [Abstract][Full Text] [Related]
18. Synergistic stimulation of MUC1 expression in normal breast epithelia and breast cancer cells by interferon-gamma and tumor necrosis factor-alpha. Lagow EL; Carson DD J Cell Biochem; 2002; 86(4):759-72. PubMed ID: 12210742 [TBL] [Abstract][Full Text] [Related]
19. Kinetics of choline transport and phosphorylation in human breast cancer cells; NMR application of the zero trans method. Katz-Brull R; Degani H Anticancer Res; 1996; 16(3B):1375-80. PubMed ID: 8694504 [TBL] [Abstract][Full Text] [Related]
20. Retinoic acid induces expression of the interleukin-1beta gene in cultured normal human mammary epithelial cells and in human breast carcinoma lines. Liu L; Gudas LJ J Cell Physiol; 2002 Nov; 193(2):244-52. PubMed ID: 12385002 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]