BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 8694760)

  • 1. Oxidative denitrification of N omega-hydroxy-L-arginine by the superoxide radical anion.
    Everett SA; Dennis MF; Patel KB; Stratford MR; Wardman P
    Biochem J; 1996 Jul; 317 ( Pt 1)(Pt 1):17-21. PubMed ID: 8694760
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enzymatic and cryoreduction EPR studies of the hydroxylation of methylated N(ω)-hydroxy-L-arginine analogues by nitric oxide synthase from Geobacillus stearothermophilus.
    Davydov R; Labby KJ; Chobot SE; Lukoyanov DA; Crane BR; Silverman RB; Hoffman BM
    Biochemistry; 2014 Oct; 53(41):6511-9. PubMed ID: 25251261
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Oxidations of N(omega)-hydroxyarginine analogues and various N-hydroxyguanidines by NO synthase II: key role of tetrahydrobiopterin in the reaction mechanism and substrate selectivity.
    Moali C; Boucher JL; Renodon-Corniere A; Stuehr DJ; Mansuy D
    Chem Res Toxicol; 2001 Feb; 14(2):202-10. PubMed ID: 11258969
    [TBL] [Abstract][Full Text] [Related]  

  • 4. On the mechanism of the nitric oxide synthase-catalyzed conversion of N omega-hydroxyl-L-arginine to citrulline and nitric oxide.
    Korth HG; Sustmann R; Thater C; Butler AR; Ingold KU
    J Biol Chem; 1994 Jul; 269(27):17776-9. PubMed ID: 7517932
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Oxidation of N-hydroxyguanidines by cytochromes P450 and NO-synthases and formation of nitric oxide.
    Mansuy D; Boucher JL
    Drug Metab Rev; 2002 Aug; 34(3):593-606. PubMed ID: 12214669
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrochemical detection of nitroso-arginine as an intermediate between N-hydroxy-arginine and citrulline. An in vitro versus in vivo study using microcarbon electrodes in neuronal nitric oxide synthase and mice brain.
    Meulemans A
    Neurosci Lett; 2000 Nov; 294(2):125-9. PubMed ID: 11058803
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Possible mechanism of nitric oxide production from N(G)-hydroxy-L-arginine or hydroxylamine by superoxide ion.
    Vetrovsky P; Stoclet JC; Entlicher G
    Int J Biochem Cell Biol; 1996 Dec; 28(12):1311-8. PubMed ID: 9081745
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Theoretical studies of the second step of the nitric oxide synthase reaction: Electron tunneling prevents uncoupling.
    Shamovsky I; Belfield G; Lewis R; Narjes F; Ripa L; Tyrchan C; Öberg L; Sjö P
    J Inorg Biochem; 2018 Apr; 181():28-40. PubMed ID: 29407906
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The second step of the nitric oxide synthase reaction: evidence for ferric-peroxo as the active oxidant.
    Woodward JJ; Chang MM; Martin NI; Marletta MA
    J Am Chem Soc; 2009 Jan; 131(1):297-305. PubMed ID: 19128180
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reactions catalyzed by tetrahydrobiopterin-free nitric oxide synthase.
    Rusche KM; Spiering MM; Marletta MA
    Biochemistry; 1998 Nov; 37(44):15503-12. PubMed ID: 9799513
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reactivity of the flavin semiquinone of nitric oxide synthase in the oxygenation of arginine to NG-hydroxyarginine, the first step of nitric oxide synthesis.
    Witteveen CF; Giovanelli J; Yim MB; Gachhui R; Stuehr DJ; Kaufman S
    Biochem Biophys Res Commun; 1998 Sep; 250(1):36-42. PubMed ID: 9735327
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Substrate specificity of NO synthases: detailed comparison of L-arginine, homo-L-arginine, their N omega-hydroxy derivatives, and N omega-hydroxynor-L-arginine.
    Moali C; Boucher JL; Sari MA; Stuehr DJ; Mansuy D
    Biochemistry; 1998 Jul; 37(29):10453-60. PubMed ID: 9671515
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inhibition of nitric oxide formation in vivo enhances superoxide release by the perfused liver.
    Bautista AP; Spitzer JJ
    Am J Physiol; 1994 May; 266(5 Pt 1):G783-8. PubMed ID: 8203525
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nature of oxygen activation in glucose oxidase from Aspergillus niger: the importance of electrostatic stabilization in superoxide formation.
    Su Q; Klinman JP
    Biochemistry; 1999 Jun; 38(26):8572-81. PubMed ID: 10387105
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inhibition of arginase in rat and rabbit alveolar macrophages by N omega-hydroxy-D,L-indospicine, effects on L-arginine utilization by nitric oxide synthase.
    Hey C; Boucher JL; Vadon-Le Goff S; Ketterer G; Wessler I; Racké K
    Br J Pharmacol; 1997 Jun; 121(3):395-400. PubMed ID: 9179379
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nitrogen oxides and hydroxyguanidines: formation of donors of nitric and nitrous oxides and possible relevance to nitrous oxide formation by nitric oxide synthase.
    Southan GJ; Srinivasan A
    Nitric Oxide; 1998; 2(4):270-86. PubMed ID: 9851368
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Formation of N delta-cyanoornithine from NG-hydroxy-L-arginine and hydrogen peroxide by neuronal nitric oxide synthase: implications for mechanism.
    Clague MJ; Wishnok JS; Marletta MA
    Biochemistry; 1997 Nov; 36(47):14465-73. PubMed ID: 9398165
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Oxidation of NG-hydroxy-L-arginine by nitric oxide synthase: evidence for the involvement of the heme in catalysis.
    Pufahl RA; Marletta MA
    Biochem Biophys Res Commun; 1993 Jun; 193(3):963-70. PubMed ID: 7686757
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Alternative nitric oxide-producing substrates for NO synthases.
    Mansuy D; Boucher JL
    Free Radic Biol Med; 2004 Oct; 37(8):1105-21. PubMed ID: 15451052
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microsomal formation of nitric oxide and cyanamides from non-physiological N-hydroxyguanidines: N-hydroxydebrisoquine as a model substrate.
    Clement B; Boucher JL; Mansuy D; Harsdorf A
    Biochem Pharmacol; 1999 Aug; 58(3):439-45. PubMed ID: 10424762
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.