These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

90 related articles for article (PubMed ID: 8694873)

  • 1. Role of a laccase in the degradation of pentachlorophenol.
    Ricotta A; Unz RF; Bollag J
    Bull Environ Contam Toxicol; 1996 Oct; 57(4):560-7. PubMed ID: 8694873
    [No Abstract]   [Full Text] [Related]  

  • 2. Comparison of three bioremediation agents for mineralization and transformation of pentachlorophenol in soil.
    Pfender WF; Maggard SP; Gander LK; Watrud LS
    Bull Environ Contam Toxicol; 1997 Aug; 59(2):230-7. PubMed ID: 9211693
    [No Abstract]   [Full Text] [Related]  

  • 3. Polymerization of pentachlorophenol and ferulic acid by fungal extracellular lignin-degrading enzymes.
    Rüttimann-Johnson C; Lamar RT
    Appl Environ Microbiol; 1996 Oct; 62(10):3890-3. PubMed ID: 8967777
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The early oxidative biodegradation steps of residual kraft lignin models with laccase.
    Crestini C; Argyropoulos DS
    Bioorg Med Chem; 1998 Nov; 6(11):2161-9. PubMed ID: 9881106
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of a thermostable
    Coelho GD; Ballaminut N; Thomaz DV; Gomes Machado KM
    Prep Biochem Biotechnol; 2019; 49(9):908-915. PubMed ID: 31271327
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Degradation of pentachlorophenol by the white rot fungus Phanerochaete chrysosporium grown in ammonium lignosulphonate media.
    Aiken BS; Logan BE
    Biodegradation; 1996 Jun; 7(3):175-82. PubMed ID: 8782389
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 'Yellow' laccase of Panus tigrinus oxidizes non-phenolic substrates without electron-transfer mediators.
    Leontievsky A; Myasoedova N; Pozdnyakova N; Golovleva L
    FEBS Lett; 1997 Aug; 413(3):446-8. PubMed ID: 9303553
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Degradation of 2,4-dichlorophenol and pentachlorophenol by two brown rot fungi.
    Fahr K; Wetzstein HG; Grey R; Schlosser D
    FEMS Microbiol Lett; 1999 Jun; 175(1):127-32. PubMed ID: 10361717
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An in silico [correction of insilico] approach to bioremediation: laccase as a case study.
    Suresh PS; Kumar A; Kumar R; Singh VP
    J Mol Graph Model; 2008 Jan; 26(5):845-9. PubMed ID: 17606396
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reactions of pentachlorophenol with laccase from Coriolus versicolor.
    Ullah MA; Bedford CT; Evans CS
    Appl Microbiol Biotechnol; 2000 Feb; 53(2):230-4. PubMed ID: 10709987
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluation of solid substrates for enzyme production by Coriolus versicolor, for use in bioremediation of chlorophenols in aqueous effluents.
    Ullah MA; Kadhim H; Rastall RA; Evans CS
    Appl Microbiol Biotechnol; 2000 Dec; 54(6):832-7. PubMed ID: 11152077
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synergistic effect of laccase mediators on pentachlorophenol removal by Ganoderma lucidum laccase.
    Jeon JR; Murugesan K; Kim YM; Kim EJ; Chang YS
    Appl Microbiol Biotechnol; 2008 Dec; 81(4):783-90. PubMed ID: 18987855
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A previously unrecognized step in pentachlorophenol degradation in Sphingobium chlorophenolicum is catalyzed by tetrachlorobenzoquinone reductase (PcpD).
    Dai M; Rogers JB; Warner JR; Copley SD
    J Bacteriol; 2003 Jan; 185(1):302-10. PubMed ID: 12486067
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In vitro investigation of the interaction between pentachlorophenol and alkaline phosphatase by spectroscopic methods.
    Liu Q; Zhou P; Chen Y
    Spectrochim Acta A Mol Biomol Spectrosc; 2012 Feb; 87():298-302. PubMed ID: 22188648
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optimization of enzymatic chlorine removal from Kraft pulp.
    Taşpinar A; Kolankaya N
    Bull Environ Contam Toxicol; 1998 Jul; 61(1):15-21. PubMed ID: 9657825
    [No Abstract]   [Full Text] [Related]  

  • 16. Effects of copper-chrome-arsenate (CCA) components on PCP degradation by Arthrobacter strain ATCC 33790.
    Edgehill RU
    Bull Environ Contam Toxicol; 1996 Aug; 57(2):258-63. PubMed ID: 8661907
    [No Abstract]   [Full Text] [Related]  

  • 17. Purification of a new manganese peroxidase of the white-rot fungus Irpex lacteus, and degradation of polycyclic aromatic hydrocarbons by the enzyme.
    Baborová P; Möder M; Baldrian P; Cajthamlová K; Cajthaml T
    Res Microbiol; 2006 Apr; 157(3):248-53. PubMed ID: 16256312
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Accumulation and elimination of pentachlorophenol in the freshwater bivalve Corbicula fluminea.
    Basack SB; Oneto ML; Verrengia Guerrero NR; Kesten EM
    Bull Environ Contam Toxicol; 1997 Mar; 58(3):497-503. PubMed ID: 9008063
    [No Abstract]   [Full Text] [Related]  

  • 19. Genome shuffling improves degradation of the anthropogenic pesticide pentachlorophenol by Sphingobium chlorophenolicum ATCC 39723.
    Dai M; Copley SD
    Appl Environ Microbiol; 2004 Apr; 70(4):2391-7. PubMed ID: 15066836
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Determination of laccase activity in mixed solvents: comparison between two chromogens in a spectrophotometric assay.
    Cantarella G; d'Acunzo F; Galli C
    Biotechnol Bioeng; 2003 May; 82(4):395-8. PubMed ID: 12632395
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.