These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 8694905)

  • 1. The binding specificity of amino acid transport system y+L in human erythrocytes is altered by monovalent cations.
    Angelo S; Irarrázabal C; Devés R
    J Membr Biol; 1996 Sep; 153(1):37-44. PubMed ID: 8694905
    [TBL] [Abstract][Full Text] [Related]  

  • 2. System y+L: the broad scope and cation modulated amino acid transporter.
    Devés R; Angelo S; Rojas AM
    Exp Physiol; 1998 Mar; 83(2):211-20. PubMed ID: 9568481
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cation and harmaline interactions with Na(+)-independent dibasic amino acid transport system y+ in human erythrocytes and in erythrocytes from a primitive vertebrate the pacific hagfish (Eptatretus stouti).
    Young JD; Fincham DA; Harvey CM
    Biochim Biophys Acta; 1991 Nov; 1070(1):111-8. PubMed ID: 1751517
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mammalian amino acid transport system y+ revisited: specificity and cation dependence of the interaction with neutral amino acids.
    Rojas AM; Devés R
    J Membr Biol; 1999 Mar; 168(2):199-208. PubMed ID: 10089239
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Amino acid transport system y+L of human erythrocytes: specificity and cation dependence of the translocation step.
    Angelo S; Devés R
    J Membr Biol; 1994 Aug; 141(2):183-92. PubMed ID: 7807519
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transport properties of a system y+L neutral and basic amino acid transporter. Insights into the mechanisms of substrate recognition.
    Kanai Y; Fukasawa Y; Cha SH; Segawa H; Chairoungdua A; Kim DK; Matsuo H; Kim JY; Miyamoto K; Takeda E; Endou H
    J Biol Chem; 2000 Jul; 275(27):20787-93. PubMed ID: 10777485
    [TBL] [Abstract][Full Text] [Related]  

  • 7. System y+L-like activities account for high and low amino-acid transport phenotypes in chicken erythrocytes.
    Vargas M; Devés R
    J Membr Biol; 2001 Oct; 183(3):183-93. PubMed ID: 11696860
    [TBL] [Abstract][Full Text] [Related]  

  • 8. N-ethylmaleimide discriminates between two lysine transport systems in human erythrocytes.
    Devés R; Angelo S; Chávez P
    J Physiol; 1993 Aug; 468():753-66. PubMed ID: 8254535
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of a new transport system (y+L) in human erythrocytes that recognizes lysine and leucine with high affinity.
    Devés R; Chavez P; Boyd CA
    J Physiol; 1992 Aug; 454():491-501. PubMed ID: 1474499
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inhibition of transport system b0,+ in blastocysts by inorganic and organic cations yields insight into the structure of its amino acid receptor site.
    Van Winkle LJ; Campione AL; Gorman JM
    Biochim Biophys Acta; 1990 Jun; 1025(2):215-24. PubMed ID: 2114171
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Site directed mutagenesis reduces the Na+ affinity of HKT1, an Na+ energized high affinity K+ transporter.
    Diatloff E; Kumar R; Schachtman DP
    FEBS Lett; 1998 Jul; 432(1-2):31-6. PubMed ID: 9710245
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of a novel Na+-independent amino acid transporter in horse erythrocytes.
    Fincham DA; Mason DK; Young JD
    Biochem J; 1985 Apr; 227(1):13-20. PubMed ID: 3994678
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Use of membrane vesicles to estimate the numbers of system y+ and system L amino acid transporters in human erythrocytes.
    Tse CM; Fincham DA; Ellory JC; Young JD
    Biochem J; 1991 Jul; 277 ( Pt 2)(Pt 2):565-8. PubMed ID: 1907132
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The interaction of monovalent cations with the sodium pump of low-potassium goat erythrocytes.
    Cavieres JD; Ellory JC
    J Physiol; 1977 Sep; 271(1):289-318. PubMed ID: 144181
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sodium ion-dependent amino acid transport in membrane vesicles of Bacillus stearothermophilus.
    Heyne RI; de Vrij W; Crielaard W; Konings WN
    J Bacteriol; 1991 Jan; 173(2):791-800. PubMed ID: 1670936
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characteristics of a cationic amino acid transport system in the basolateral membrane of the cat salivary epithelium.
    Mann GE; Wilson SM; Yudilevich DL
    J Physiol; 1984 Jun; 351():123-34. PubMed ID: 6431084
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sodium and chloride-dependent high and low-affinity uptakes of GABA by brain capillary endothelial cells.
    Zhang Y; Liu GQ
    Brain Res; 1998 Oct; 808(1):1-7. PubMed ID: 9795097
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Membrane potential dependence of the kinetics of cationic amino acid transport systems in human placenta.
    Eleno N; Devés R; Boyd CA
    J Physiol; 1994 Sep; 479 ( Pt 2)(Pt 2):291-300. PubMed ID: 7799228
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multiple transport pathways for dibasic amino acids in the larval midgut of the silkworm Bombyx mori.
    Casartelli M; Leonardi MG; Fiandra L; Parenti P; Giordana B
    Insect Biochem Mol Biol; 2001 Apr; 31(6-7):621-32. PubMed ID: 11267901
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The dependence on external cation of sodium and potassium fluxes across the human red cell membrane at low temperatures.
    Blackstock EJ; Stewart GW
    J Physiol; 1986 Jun; 375():403-20. PubMed ID: 3795065
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.