These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Analysis of the active center of Bacillus stearothermophilus neopullulanase. Kuriki T; Takata H; Okada S; Imanaka T J Bacteriol; 1991 Oct; 173(19):6147-52. PubMed ID: 1917847 [TBL] [Abstract][Full Text] [Related]
3. Introducing transglycosylation activity in a liquefying alpha-amylase. Saab-Rincón G; del-Río G; Santamaría RI; López-Munguía A; Soberón X FEBS Lett; 1999 Jun; 453(1-2):100-6. PubMed ID: 10403384 [TBL] [Abstract][Full Text] [Related]
4. Conserved residues of liquefying alpha-amylases are concentrated in the vicinity of active site. Vihinen M; Mäntsälä P Biochem Biophys Res Commun; 1990 Jan; 166(1):61-5. PubMed ID: 2302216 [TBL] [Abstract][Full Text] [Related]
5. Three-dimensional structure and substrate binding of Bacillus stearothermophilus neopullulanase. Hondoh H; Kuriki T; Matsuura Y J Mol Biol; 2003 Feb; 326(1):177-88. PubMed ID: 12547200 [TBL] [Abstract][Full Text] [Related]
6. Random mutagenesis used to probe the structure and function of Bacillus stearothermophilus alpha-amylase. Holm L; Koivula AK; Lehtovaara PM; Hemminki A; Knowles JK Protein Eng; 1990 Jan; 3(3):181-91. PubMed ID: 2330367 [TBL] [Abstract][Full Text] [Related]
7. Role of the glutamate 332 residue in the transglycosylation activity of ThermusMaltogenic amylase. Kim TJ; Park CS; Cho HY; Cha SS; Kim JS; Lee SB; Moon TW; Kim JW; Oh BH; Park KH Biochemistry; 2000 Jun; 39(23):6773-80. PubMed ID: 10841756 [TBL] [Abstract][Full Text] [Related]
8. Protein engineering in the alpha-amylase family: catalytic mechanism, substrate specificity, and stability. Svensson B Plant Mol Biol; 1994 May; 25(2):141-57. PubMed ID: 8018865 [TBL] [Abstract][Full Text] [Related]
9. Starch- and glycogen-debranching and branching enzymes: prediction of structural features of the catalytic (beta/alpha)8-barrel domain and evolutionary relationship to other amylolytic enzymes. Jespersen HM; MacGregor EA; Henrissat B; Sierks MR; Svensson B J Protein Chem; 1993 Dec; 12(6):791-805. PubMed ID: 8136030 [TBL] [Abstract][Full Text] [Related]
10. Close evolutionary relatedness among functionally distantly related members of the (alpha/beta)8-barrel glycosyl hydrolases suggested by the similarity of their fifth conserved sequence region. Janecek S FEBS Lett; 1995 Dec; 377(1):6-8. PubMed ID: 8543020 [TBL] [Abstract][Full Text] [Related]
11. Nucleotide sequence of the neopullulanase gene from Bacillus stearothermophilus. Kuriki T; Imanaka T J Gen Microbiol; 1989 Jun; 135(6):1521-8. PubMed ID: 2482332 [TBL] [Abstract][Full Text] [Related]
12. Introduction of novel thermostable α-amylases from genus Anoxybacillus and proposing to group the Bacillaceae related α-amylases under five individual GH13 subfamilies. Cihan AC; Yildiz ED; Sahin E; Mutlu O World J Microbiol Biotechnol; 2018 Jun; 34(7):95. PubMed ID: 29904894 [TBL] [Abstract][Full Text] [Related]
13. Structure, specificity and function of cyclomaltodextrinase, a multispecific enzyme of the alpha-amylase family. Park KH; Kim TJ; Cheong TK; Kim JW; Oh BH; Svensson B Biochim Biophys Acta; 2000 May; 1478(2):165-85. PubMed ID: 10825529 [TBL] [Abstract][Full Text] [Related]
14. Molecular and enzymatic characterization of a maltogenic amylase that hydrolyzes and transglycosylates acarbose. Cha HJ; Yoon HG; Kim YW; Lee HS; Kim JW; Kweon KS; Oh BH; Park KH Eur J Biochem; 1998 Apr; 253(1):251-62. PubMed ID: 9578484 [TBL] [Abstract][Full Text] [Related]
15. Effect of mutation of an amino acid residue near the catalytic site on the activity of Bacillus stearothermophilus alpha-amylase. Takase K Eur J Biochem; 1993 Feb; 211(3):899-902. PubMed ID: 8436143 [TBL] [Abstract][Full Text] [Related]
16. Pattern of action of Bacillus stearothermophilus neopullulanase on pullulan. Imanaka T; Kuriki T J Bacteriol; 1989 Jan; 171(1):369-74. PubMed ID: 2914851 [TBL] [Abstract][Full Text] [Related]
17. Biochemical characterization and identification of catalytic residues in alpha-glucuronidase from Bacillus stearothermophilus T-6. Zaide G; Shallom D; Shulami S; Zolotnitsky G; Golan G; Baasov T; Shoham G; Shoham Y Eur J Biochem; 2001 May; 268(10):3006-16. PubMed ID: 11358519 [TBL] [Abstract][Full Text] [Related]
18. Improving the thermostability and enhancing the Ca(2+) binding of the maltohexaose-forming α-amylase from Bacillus stearothermophilus. Li Z; Duan X; Wu J J Biotechnol; 2016 Mar; 222():65-72. PubMed ID: 26869314 [TBL] [Abstract][Full Text] [Related]
19. A thermophilic alkalophilic α-amylase from Bacillus sp. AAH-31 shows a novel domain organization among glycoside hydrolase family 13 enzymes. Saburi W; Morimoto N; Mukai A; Kim DH; Takehana T; Koike S; Matsui H; Mori H Biosci Biotechnol Biochem; 2013; 77(9):1867-73. PubMed ID: 24018662 [TBL] [Abstract][Full Text] [Related]
20. Conversion of neopullulanase-alpha-amylase from Thermoactinomyces vulgaris R-47 into an amylopullulanse-type enzyme. Ibuka A; Tonozuka T; Matsuzawa H; Sakai H J Biochem; 1998 Feb; 123(2):275-82. PubMed ID: 9538203 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]