BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 8695648)

  • 1. Iron ligand recognition by monomeric hemoglobins.
    Stephanos JJ; Farina SA; Addison AW
    Biochim Biophys Acta; 1996 Jul; 1295(2):209-21. PubMed ID: 8695648
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Anomalous pH dependence of the heme-bound carbon monoxide spectroscopic properties in the Glycera dibranchiata monomer hemoglobin fraction compared to vertebrate hemoglobins.
    Satterlee JD
    Biochim Biophys Acta; 1984 Dec; 791(3):384-94. PubMed ID: 6518167
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thermochromism of heme adducts of Glycera hemoglobin and some other monomeric heme proteins.
    Stephanos JJ; Addison AW
    J Inorg Biochem; 1990 Aug; 39(4):351-69. PubMed ID: 2167947
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nitrosyliron(III) hemoglobin: autoreduction and spectroscopy.
    Addison AW; Stephanos JJ
    Biochemistry; 1986 Jul; 25(14):4104-13. PubMed ID: 3741844
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The structural bases for the unique ligand binding properties of Glycera dibranchiata hemoglobins. A resonance Raman study.
    Carson SD; Constantinidis I; Mintorovitch J; Satterlee JD; Ondrias MR
    J Biol Chem; 1986 Feb; 261(5):2246-55. PubMed ID: 3944134
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A comparison of the geminate recombination kinetics of several monomeric heme proteins.
    Rohlfs RJ; Olson JS; Gibson QH
    J Biol Chem; 1988 Feb; 263(4):1803-13. PubMed ID: 3338995
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Studies on cobalt myoglobins and hemoglobins. Interaction of sperm whale myoglobin and Glycera hemoglobin with molecular oxygen.
    Ikeda-Saito M; Iizuka T; Yamamoto H; Kayne FJ; Yonetani T
    J Biol Chem; 1977 Jul; 252(14):4882-7. PubMed ID: 17607
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Infrared analysis of ligand- and oxidation-induced conformational changes in hemoglobins and myoglobins.
    Dong A; Huang P; Caughey B; Caughey WS
    Arch Biochem Biophys; 1995 Feb; 316(2):893-8. PubMed ID: 7864648
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effects of high pressure upon ligated and deoxyhemoglobins and myoglobin. An optical spectroscopic study.
    Alden RG; Satterlee JD; Mintorovitch J; Constantinidis I; Ondrias MR; Swanson BI
    J Biol Chem; 1989 Feb; 264(4):1933-40. PubMed ID: 2914887
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Concentration-dependent effects of anions on the anaerobic oxidation of hemoglobin and myoglobin.
    Taboy CH; Faulkner KM; Kraiter D; Bonaventura C; Crumbliss AL
    J Biol Chem; 2000 Dec; 275(50):39048-54. PubMed ID: 10984477
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spectroscopic and kinetic aspects of Elephas maximus hemoglobin.
    Stephanos JJ; Addison AW
    Eur J Biochem; 1990 Apr; 189(1):185-91. PubMed ID: 2158890
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Studies on the heme environment of horse heart ferric cytochrome c. Azide and imidazole complexes of ferric cytochrome c.
    Ikeda-Saito M; Iizuka T
    Biochim Biophys Acta; 1975 Jun; 393(2):335-42. PubMed ID: 167834
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Functional aspects of ultra-rapid heme doming in hemoglobin, myoglobin, and the myoglobin mutant H93G.
    Franzen S; Bohn B; Poyart C; DePillis G; Boxer SG; Martin JL
    J Biol Chem; 1995 Jan; 270(4):1718-20. PubMed ID: 7829506
    [TBL] [Abstract][Full Text] [Related]  

  • 14. NMR studies of the heme pocket conformations of monomeric hemoglobins from Glycera dibranchiata. Implications for ligand binding.
    Cooke RM; Dalvit C; Narula SS; Wright PE
    Eur J Biochem; 1987 Jul; 166(2):399-408. PubMed ID: 3609017
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Isoelectric focusing purity criteria and 1H NMR detectable spectroscopic heterogeneity in the major isolated monomer hemoglobins from Glycera dibranchiata.
    Constantinidis I; Satterlee JD
    Biochemistry; 1987 Dec; 26(24):7779-86. PubMed ID: 3427104
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Iron hemiporphycene as a functional prosthetic group for myoglobin.
    Neya S; Imai K; Hori H; Ishikawa H; Ishimori K; Okuno D; Nagatomo S; Hoshino T; Hata M; Funasaki N
    Inorg Chem; 2003 Mar; 42(5):1456-61. PubMed ID: 12611510
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanism of NO-induced oxidation of myoglobin and hemoglobin.
    Eich RF; Li T; Lemon DD; Doherty DH; Curry SR; Aitken JF; Mathews AJ; Johnson KA; Smith RD; Phillips GN; Olson JS
    Biochemistry; 1996 Jun; 35(22):6976-83. PubMed ID: 8679521
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cyanide binding to Lucina pectinata hemoglobin I and to sperm whale myoglobin: an x-ray crystallographic study.
    Bolognesi M; Rosano C; Losso R; Borassi A; Rizzi M; Wittenberg JB; Boffi A; Ascenzi P
    Biophys J; 1999 Aug; 77(2):1093-9. PubMed ID: 10423453
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Crystal structures of unligated and CN-ligated Glycera dibranchiata monomer ferric hemoglobin components III and IV.
    Park HJ; Yang C; Treff N; Satterlee JD; Kang C
    Proteins; 2002 Oct; 49(1):49-60. PubMed ID: 12211015
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural consequences of heme isomerism in monomeric hemoglobins from Glycera dibranchiata.
    Cooke RM; Wright PE
    Eur J Biochem; 1987 Jul; 166(2):409-14. PubMed ID: 3609018
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.