These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
208 related articles for article (PubMed ID: 8695649)
21. Copper, zinc superoxide dismutase catalyzes hydroxyl radical production from hydrogen peroxide. Yim MB; Chock PB; Stadtman ER Proc Natl Acad Sci U S A; 1990 Jul; 87(13):5006-10. PubMed ID: 2164216 [TBL] [Abstract][Full Text] [Related]
22. A mechanism for NADPH inhibition of catalase compound II formation. Hillar A; Nicholls P FEBS Lett; 1992 Dec; 314(2):179-82. PubMed ID: 1459249 [TBL] [Abstract][Full Text] [Related]
23. A mechanistic study of the formation of hydroxyl radicals induced by horseradish peroxidase with NADH. Miura T J Biochem; 2012 Aug; 152(2):199-206. PubMed ID: 22718789 [TBL] [Abstract][Full Text] [Related]
24. Purification and characterization of a novel type of catalase from the bacterium Klebsiella pneumoniae. Goldberg I; Hochman A Biochim Biophys Acta; 1989 May; 991(2):330-6. PubMed ID: 2655713 [TBL] [Abstract][Full Text] [Related]
25. Spectral studies of intermediate species formed in one-electron reactions of bovine liver catalase at room and low temperatures. A comparison with peroxidase reactions. Metodiewa D; Dunford HB Int J Radiat Biol; 1992 Nov; 62(5):543-53. PubMed ID: 1361511 [TBL] [Abstract][Full Text] [Related]
26. Mechanism of hydrogen peroxide-induced Cu,Zn-superoxide dismutase-centered radical formation as explored by immuno-spin trapping: the role of copper- and carbonate radical anion-mediated oxidations. Ramirez DC; Gomez Mejiba SE; Mason RP Free Radic Biol Med; 2005 Jan; 38(2):201-14. PubMed ID: 15607903 [TBL] [Abstract][Full Text] [Related]
27. Periodical bubble formation and the oscillatory change in dissolved oxygen concentration in a catalase-hydrogen peroxide system. Sasaki S Anal Sci; 2006 Jun; 22(6):903-5. PubMed ID: 16772694 [TBL] [Abstract][Full Text] [Related]
28. The inhibition of catalase by glutathione. Sun Y; Oberley LW Free Radic Biol Med; 1989; 7(6):595-602. PubMed ID: 2559882 [TBL] [Abstract][Full Text] [Related]
29. The role of superoxide radicals in lactoperoxidase-catalysed H2O2-metabolism and in irreversible enzyme inactivation. Jenzer H; Kohler H Biochem Biophys Res Commun; 1986 Aug; 139(1):327-32. PubMed ID: 3021127 [TBL] [Abstract][Full Text] [Related]
30. Non-oxygen-forming pathways of hydrogen peroxide degradation by bovine liver catalase at low hydrogen peroxide fluxes. de Groot H; Auferkamp O; Bramey T; de Groot K; Kirsch M; Korth HG; Petrat F; Sustmann R Free Radic Res; 2006 Jan; 40(1):67-74. PubMed ID: 16298761 [TBL] [Abstract][Full Text] [Related]
31. Nitroxide radicals as research tools: Elucidating the kinetics and mechanisms of catalase-like and "suicide inactivation" of metmyoglobin. Samuni U; Czapski G; Goldstein S Biochim Biophys Acta; 2016 Jul; 1860(7):1409-16. PubMed ID: 27062906 [TBL] [Abstract][Full Text] [Related]
32. Catalase Expression Is Modulated by Vancomycin and Ciprofloxacin and Influences the Formation of Free Radicals in Staphylococcus aureus Cultures. Wang Y; Hougaard AB; Paulander W; Skibsted LH; Ingmer H; Andersen ML Appl Environ Microbiol; 2015 Sep; 81(18):6393-8. PubMed ID: 26150471 [TBL] [Abstract][Full Text] [Related]
33. Efficiency of bovine liver catalase as a catalyst to cleave H2O2 added continually to buffer solutions. Ibrahim M; Schlegel HG Biotechnol Bioeng; 1980 Sep; 22(9):1895-1906. PubMed ID: 7407340 [TBL] [Abstract][Full Text] [Related]
34. Reversible binding and inhibition of catalase by nitric oxide. Brown GC Eur J Biochem; 1995 Aug; 232(1):188-91. PubMed ID: 7556149 [TBL] [Abstract][Full Text] [Related]
35. Comparative kinetic characterization of catalases from Candida boidinii yeast and bovine liver. Metelitza DI; Eryomin AN; Artzukevich IM; Chernikevich IP Biochemistry (Mosc); 1997 Apr; 62(4):377-85. PubMed ID: 9275276 [TBL] [Abstract][Full Text] [Related]
36. Kinetics of hydrogen peroxide decomposition by catalase: hydroxylic solvent effects. Raducan A; Cantemir AR; Puiu M; Oancea D Bioprocess Biosyst Eng; 2012 Nov; 35(9):1523-30. PubMed ID: 22565543 [TBL] [Abstract][Full Text] [Related]
37. Relationship between the size of the bottleneck 15 A from iron in the main channel and the reactivity of catalase corresponding to the molecular size of substrates. Hara I; Ichise N; Kojima K; Kondo H; Ohgiya S; Matsuyama H; Yumoto I Biochemistry; 2007 Jan; 46(1):11-22. PubMed ID: 17198371 [TBL] [Abstract][Full Text] [Related]
38. Mechanism-based inactivation of lacrimal-gland peroxidase by phenylhydrazine: a suicidal substrate to probe the active site. Mazumdar A; Adak S; Chatterjee R; Banerjee RK Biochem J; 1997 Jun; 324 ( Pt 3)(Pt 3):713-9. PubMed ID: 9210393 [TBL] [Abstract][Full Text] [Related]
39. A novel NADPH:(bound) NADP+ reductase and NADH:(bound) NADP+ transhydrogenase function in bovine liver catalase. Gaetani GF; Ferraris AM; Sanna P; Kirkman HN Biochem J; 2005 Feb; 385(Pt 3):763-8. PubMed ID: 15456401 [TBL] [Abstract][Full Text] [Related]
40. [Influence of magnetic field on hydrogen peroxide decomposition by catalase]. Vanag VK; Kuznetsov AN; Piruzian LA Biofizika; 1983; 28(1):18-23. PubMed ID: 6830896 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]