These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

67 related articles for article (PubMed ID: 8697167)

  • 41. MITOCHONDRIA: investigation of in vivo muscle mitochondrial function by 31P magnetic resonance spectroscopy.
    Prompers JJ; Wessels B; Kemp GJ; Nicolay K
    Int J Biochem Cell Biol; 2014 May; 50():67-72. PubMed ID: 24569118
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Insights into developmental muscle metabolism through the use of 31P-magnetic resonance spectroscopy: a review.
    Barker AR; Armstrong N
    Pediatr Exerc Sci; 2010 Aug; 22(3):350-68. PubMed ID: 20814032
    [TBL] [Abstract][Full Text] [Related]  

  • 43. MR spectroscopy in heart failure.
    Holloway C; ten Hove M; Clarke K; Neubauer S
    Front Biosci (Schol Ed); 2011 Jan; 3(1):331-40. PubMed ID: 21196379
    [TBL] [Abstract][Full Text] [Related]  

  • 44. [Non-invasive investigation of muscle function using 31P magnetic resonance spectroscopy and 1H MR imaging].
    Bendahan D; Mattei JP; Guis S; Kozak-Ribbens G; Cozzone PJ
    Rev Neurol (Paris); 2006 Apr; 162(4):467-84. PubMed ID: 16585908
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Introduction to in vivo 31P magnetic resonance spectroscopy of (human) skeletal muscle.
    Heerschap A; Houtman C; in 't Zandt HJ; van den Bergh AJ; Wieringa B
    Proc Nutr Soc; 1999 Nov; 58(4):861-70. PubMed ID: 10817153
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Evaluation of Cardiac Metabolism by Magnetic Resonance Spectroscopy in Heart Failure.
    Dellegrottaglie S; Scatteia A; Pascale CE; Renga F; Perrone-Filardi P
    Heart Fail Clin; 2019 Jul; 15(3):421-433. PubMed ID: 31079700
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Magnetic resonance spectroscopy in human cardiomyopathies.
    Schaefer S
    J Cardiovasc Magn Reson; 2000; 2(2):151-7. PubMed ID: 11545132
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The 31P-NMR stress test: an approach for detecting myocardial ischemia.
    Butterworth EJ; Evanochko WT; Pohost GM
    Ann Biomed Eng; 2000 Aug; 28(8):930-3. PubMed ID: 11144677
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Skeletal muscle: a paradigm for testing principles of bioenergetics.
    Kushmerick MJ
    J Bioenerg Biomembr; 1995 Dec; 27(6):555-69. PubMed ID: 8746843
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Quantification of skeletal muscle mitochondrial function by 31P magnetic resonance spectroscopy techniques: a quantitative review.
    Kemp GJ; Ahmad RE; Nicolay K; Prompers JJ
    Acta Physiol (Oxf); 2015 Jan; 213(1):107-44. PubMed ID: 24773619
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Role of the phosphocreatine system on energetic homeostasis in skeletal and cardiac muscles.
    Guimarães-Ferreira L
    Einstein (Sao Paulo); 2014; 12(1):126-31. PubMed ID: 24728259
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Standard magnetic resonance-based measurements of the Pi→ATP rate do not index the rate of oxidative phosphorylation in cardiac and skeletal muscles.
    From AH; Ugurbil K
    Am J Physiol Cell Physiol; 2011 Jul; 301(1):C1-11. PubMed ID: 21368294
    [TBL] [Abstract][Full Text] [Related]  

  • 53. MR compatible ergometers for dynamic
    Sedivy P; Dezortova M; Rydlo J; Drobny M; Krssak M; Valkovic L; Hajek M
    J Appl Biomed; 2019 Jun; 17(2):91-98. PubMed ID: 34907736
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Cellular metabolic homeostasis during large-scale change in ATP turnover rates in muscles.
    Hochachka PW; McClelland GB
    J Exp Biol; 1997 Jan; 200(Pt 2):381-6. PubMed ID: 9050247
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Metabolic myopathies.
    Martin A; Haller RG; Barohn R
    Curr Opin Rheumatol; 1994 Nov; 6(6):552-8. PubMed ID: 7865373
    [TBL] [Abstract][Full Text] [Related]  

  • 56. [Clinical relevance of MR spectroscopy of the heart].
    Neubauer S
    Z Kardiol; 2000; 89 Suppl 1():74-7. PubMed ID: 10907304
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Magnetic resonance spectroscopy in the recognition of metabolic disease.
    Griffiths RD; Edwards RH
    J Inherit Metab Dis; 1987; 10 Suppl 1():147-58. PubMed ID: 3119937
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Phosphorus Magnetic Resonance Spectroscopy (
    Tsampasian V; Cameron D; Sobhan R; Bazoukis G; Vassiliou VS
    Medicina (Kaunas); 2023 Jan; 59(1):. PubMed ID: 36676798
    [No Abstract]   [Full Text] [Related]  

  • 59. [Potential possibility of phosphocreatine usage in internal medicine].
    Vnučák M; Michalová R; Graňák K; Benko J; Mokáň M
    Vnitr Lek; 2019; 65(1):30-36. PubMed ID: 30823835
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Clinical cardiac magnetic resonance spectroscopy.
    Holloway CJ; Suttie J; Dass S; Neubauer S
    Prog Cardiovasc Dis; 2011; 54(3):320-7. PubMed ID: 22014498
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.