These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

852 related articles for article (PubMed ID: 8698076)

  • 61. Expression of JAM-A in the human corneal endothelium and retinal pigment epithelium: localization and evidence for role in barrier function.
    Mandell KJ; Berglin L; Severson EA; Edelhauser HF; Parkos CA
    Invest Ophthalmol Vis Sci; 2007 Sep; 48(9):3928-36. PubMed ID: 17724169
    [TBL] [Abstract][Full Text] [Related]  

  • 62. A developmentally regulated microsomal protein specific for the pigment epithelium of the vertebrate retina.
    Hamel CP; Tsilou E; Harris E; Pfeffer BA; Hooks JJ; Detrick B; Redmond TM
    J Neurosci Res; 1993 Mar; 34(4):414-25. PubMed ID: 8474143
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Generation and characterization of antibodies to adhesion-related molecules of retinal pigment epithelial cells.
    Zhou Y; Moszczynska A; Opas M
    Exp Eye Res; 1994 May; 58(5):585-93. PubMed ID: 7925696
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Use of the ARPE-19 cell line as a model of RPE polarity: basolateral secretion of FGF5.
    Dunn KC; Marmorstein AD; Bonilha VL; Rodriguez-Boulan E; Giordano F; Hjelmeland LM
    Invest Ophthalmol Vis Sci; 1998 Dec; 39(13):2744-9. PubMed ID: 9856785
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Retinal pigment epithelial cells secrete interleukin-6 in response to interleukin-1.
    Planck SR; Dang TT; Graves D; Tara D; Ansel JC; Rosenbaum JT
    Invest Ophthalmol Vis Sci; 1992 Jan; 33(1):78-82. PubMed ID: 1370441
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Cytoskeletal redifferentiation of feline, monkey, and human RPE cells in culture.
    Matsumoto B; Guérin CJ; Anderson DH
    Invest Ophthalmol Vis Sci; 1990 May; 31(5):879-89. PubMed ID: 2186013
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Interleukin-1beta and barrier function of retinal pigment epithelial cells (ARPE-19): aberrant expression of junctional complex molecules.
    Abe T; Sugano E; Saigo Y; Tamai M
    Invest Ophthalmol Vis Sci; 2003 Sep; 44(9):4097-104. PubMed ID: 12939333
    [TBL] [Abstract][Full Text] [Related]  

  • 68. A method for the isolation of retinal pigment epithelial cells from adult rats.
    Wang N; Koutz CA; Anderson RE
    Invest Ophthalmol Vis Sci; 1993 Jan; 34(1):101-7. PubMed ID: 8425817
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Apical orientation of the microtubule organizing center and associated gamma-tubulin during the polarization of the retinal pigment epithelium in vivo.
    Rizzolo LJ; Joshi HC
    Dev Biol; 1993 May; 157(1):147-56. PubMed ID: 8482407
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Morphologic and chromosomal study of a human retinal pigment epithelial cell line.
    Kigasawa K; Soushi S; Tanaka Y; Obazawa H
    Jpn J Ophthalmol; 1994; 38(1):10-5. PubMed ID: 7933691
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Measuring permeability in human retinal epithelial cells (ARPE-19): implications for the study of diabetic retinopathy.
    Garcia-Ramírez M; Villarroel M; Corraliza L; Hernández C; Simó R
    Methods Mol Biol; 2011; 763():179-94. PubMed ID: 21874452
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Retinoic acid promotes density-dependent growth arrest in human retinal pigment epithelial cells.
    Campochiaro PA; Hackett SF; Conway BP
    Invest Ophthalmol Vis Sci; 1991 Jan; 32(1):65-72. PubMed ID: 1846132
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Glial cell factors and the outer blood retinal barrier.
    Constable PA; Lawrenson JG
    Ophthalmic Physiol Opt; 2009 Sep; 29(5):557-64. PubMed ID: 19689550
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Establishment of a human in vitro model of the outer blood-retinal barrier.
    Hamilton RD; Foss AJ; Leach L
    J Anat; 2007 Dec; 211(6):707-16. PubMed ID: 17922819
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Suramin-treated HT29-D4 cells grown in the presence of glucose in permeable culture chambers form electrically active epithelial monolayers. A comparative study with HT29-D4 cells grown in the absence of glucose.
    Fantini J; Rognoni JB; Verrier B; Lehmann M; Roccabianca M; Mauchamp J; Marvaldi J
    Eur J Cell Biol; 1990 Feb; 51(1):110-9. PubMed ID: 2328732
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Phenotypic heterogeneity of retinal pigment epithelial cells in vitro and in situ.
    Burke JM; Skumatz CM; Irving PE; McKay BS
    Exp Eye Res; 1996 Jan; 62(1):63-73. PubMed ID: 8674514
    [TBL] [Abstract][Full Text] [Related]  

  • 77. A transformed neonatal rat retinal pigment epithelial cell line: secreted protein analysis and fibroblast growth factor and receptor expression.
    Sheedlo HJ; Wordinger RJ; Fan W; Turner JE
    Curr Eye Res; 1997 Feb; 16(2):116-26. PubMed ID: 9068942
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Osmotic stress in an in vitro model of the outer blood-retinal barrier.
    Orgül S; Reuter U; Kain HL
    Ger J Ophthalmol; 1993 Nov; 2(6):436-43. PubMed ID: 8312831
    [TBL] [Abstract][Full Text] [Related]  

  • 79. VEGF modulation of retinal pigment epithelium resistance.
    Ablonczy Z; Crosson CE
    Exp Eye Res; 2007 Dec; 85(6):762-71. PubMed ID: 17915218
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Confluent monolayers of bile duct epithelial cells with tight junctions.
    Okamoto H; Ishii M; Mano Y; Igarashi T; Ueno Y; Kobayashi K; Toyota T
    Hepatology; 1995 Jul; 22(1):153-9. PubMed ID: 7601408
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 43.