These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
85 related articles for article (PubMed ID: 8698083)
21. Projections of individual Purkinje cells of identified zones in the flocculus to the vestibular and cerebellar nuclei in the rabbit. De Zeeuw CI; Wylie DR; DiGiorgi PL; Simpson JI J Comp Neurol; 1994 Nov; 349(3):428-47. PubMed ID: 7852634 [TBL] [Abstract][Full Text] [Related]
22. Morphological evidence for altered synaptic organization and structure in the hippocampal formation of seizure-sensitive gerbils. Farias PA; Low SQ; Peterson GM; Ribak CE Hippocampus; 1992 Jul; 2(3):229-45. PubMed ID: 1308187 [TBL] [Abstract][Full Text] [Related]
23. Neurobiological studies of experimental diphenylhydantoin intoxication. - I. Electron microscopic investigations of the rat cerebellum with chronic diphenylhydantoin intoxication. Takeichi M Folia Psychiatr Neurol Jpn; 1981; 35(4):487-99. PubMed ID: 7343447 [TBL] [Abstract][Full Text] [Related]
24. Neurochemical and morphological consequences of axon terminal degeneration in cerebellar deep nuclei of mice with inherited Purkinje cell degeneration. Roffler-Tarlov S; Beart PM; O'Gorman S; Sidman RL Brain Res; 1979 May; 168(1):75-95. PubMed ID: 455087 [TBL] [Abstract][Full Text] [Related]
25. Individual Purkinje cell axons terminate on both inhibitory and excitatory neurons in the cerebellar and vestibular nuclei. de Zeeuw CI; Berrebi AS Ann N Y Acad Sci; 1996 Jun; 781():607-10. PubMed ID: 8694453 [No Abstract] [Full Text] [Related]
26. On certain fluorescent axon terminals containing granular synaptic vesicles in the cerebellar nucleus lateralis. Chan-Palay V Z Anat Entwicklungsgesch; 1973 Dec; 142(3):239-58. PubMed ID: 4782781 [No Abstract] [Full Text] [Related]
27. Elevated substance P (NK-1) receptor immunoreactivity in the cerebellum of seizure prone gerbil. Kim DS; Yoo KY; Hwang IK; Jung JY; Won MH; Seo JH; Kang TC Neuropeptides; 2005 Feb; 39(1):9-14. PubMed ID: 15627495 [TBL] [Abstract][Full Text] [Related]
28. Quantiative cytology and electron microscopy of the cerebellar nuclei in the cat. Mezey E; Palkovits M; Hámori J; Szentágothal J Verh Anat Ges; 1977; (71 Pt 1):171-6. PubMed ID: 206032 [No Abstract] [Full Text] [Related]
29. Distribution of zebrin-immunoreactive Purkinje cell terminals in the cerebellar and vestibular nuclei of birds. Wylie DR; Pakan JM; Huynh H; Graham DJ; Iwaniuk AN J Comp Neurol; 2012 May; 520(7):1532-46. PubMed ID: 22105608 [TBL] [Abstract][Full Text] [Related]
30. Projections of individual Purkinje cells of identified zones in the ventral nodulus to the vestibular and cerebellar nuclei in the rabbit. Wylie DR; De Zeeuw CI; DiGiorgi PL; Simpson JI J Comp Neurol; 1994 Nov; 349(3):448-63. PubMed ID: 7852635 [TBL] [Abstract][Full Text] [Related]
31. The fine structure of the axonal torpedo in Purkinje cells of the human cerebellum. Mann DM; Stamp JE; Yates PO; Bannister CM Neurol Res; 1980; 1(4):369-78. PubMed ID: 6107881 [TBL] [Abstract][Full Text] [Related]
32. A new synaptic specialization: filamentous braids. Chan-Palay V Brain Res; 1974 Oct; 79(2):280-4. PubMed ID: 4425381 [No Abstract] [Full Text] [Related]
33. Purkinje cells and granule cells in the cerebellum of the Stumbler mutant mouse. Caddy KW; Sidman RL Brain Res; 1981 Apr; 227(2):221-36. PubMed ID: 7225892 [TBL] [Abstract][Full Text] [Related]
34. Central projections of the utricular nerve in the gerbil. Newlands SD; Purcell IM; Kevetter GA; Perachio AA J Comp Neurol; 2002 Oct; 452(1):11-23. PubMed ID: 12205706 [TBL] [Abstract][Full Text] [Related]
35. Interactions between cerebellar Purkinje cells and their associated astrocytes. Seil FJ Histol Histopathol; 2001 Jul; 16(3):955-68. PubMed ID: 11510987 [TBL] [Abstract][Full Text] [Related]
36. Zonal organization of the floccular Purkinje cells projecting to the group y of the vestibular nuclear complex and the lateral cerebellar nucleus in cats. Sato Y; Kawasaki T; Ikarashi K Brain Res; 1982 Feb; 234(2):430-4. PubMed ID: 7059838 [No Abstract] [Full Text] [Related]
37. Cerebellar afferents originating from the medullary reticular formation that are different from mossy, climbing or monoaminergic fibers in the rat. Luo Y; Sugihara I Brain Res; 2014 May; 1566():31-46. PubMed ID: 24751573 [TBL] [Abstract][Full Text] [Related]
38. The effect of cerebral ischemia on the ultrastructure of the hypothalamo-neurohypophysial system of the mongolian gerbil. The neurohypophysial axons and pituicytes. Loesch A Aust J Exp Biol Med Sci; 1983 Oct; 61 ( Pt 5)():557-68. PubMed ID: 6661114 [TBL] [Abstract][Full Text] [Related]
39. Demonstration of taurine-like immunoreactive structures in the rat brain. Yoshida M; Karasawa N; Ito M; Sakai M; Nagatsu I Neurosci Res; 1986 May; 3(4):356-63. PubMed ID: 2425312 [TBL] [Abstract][Full Text] [Related]
40. Organisation of the cerebellar nucleus of the dogfish, Scyliorhinus canicula L.: a light microscopic, immunocytochemical, and ultrastructural study. Alvarez-Otero R; Perez SE; Rodriguez MA; Anadón R J Comp Neurol; 1996 May; 368(4):487-502. PubMed ID: 8744438 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]