These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
109 related articles for article (PubMed ID: 8698236)
1. Differential splicing-in of a proline-rich exon converts alphaNAC into a muscle-specific transcription factor. Yotov WV; St-Arnaud R Genes Dev; 1996 Jul; 10(14):1763-72. PubMed ID: 8698236 [TBL] [Abstract][Full Text] [Related]
2. skNAC and Smyd1 in transcriptional control. Berkholz J; Orgeur M; Stricker S; Munz B Exp Cell Res; 2015 Aug; 336(2):182-91. PubMed ID: 26162853 [TBL] [Abstract][Full Text] [Related]
3. Skeletal muscle-specific variant of nascent polypeptide associated complex alpha (skNAC): implications for a specific role in mammalian myoblast differentiation. Berger F; Berkholz J; Breustedt T; Ploen D; Munz B Eur J Cell Biol; 2012 Feb; 91(2):150-5. PubMed ID: 22154550 [TBL] [Abstract][Full Text] [Related]
4. Conservation and expression of an alternative 3' exon of Runx2 encoding a novel proline-rich C-terminal domain. Terry A; Kilbey A; Vaillant F; Stewart M; Jenkins A; Cameron E; Neil JC Gene; 2004 Jul; 336(1):115-25. PubMed ID: 15225881 [TBL] [Abstract][Full Text] [Related]
5. Transcriptional regulation of the mouse PNRC2 promoter by the nuclear factor Y (NFY) and E2F1. Zhou D; Masri S; Ye JJ; Chen S Gene; 2005 Nov; 361():89-100. PubMed ID: 16181749 [TBL] [Abstract][Full Text] [Related]
6. Cloning of novel injury-regulated genes. Implications for an important role of the muscle-specific protein skNAC in muscle repair. Munz B; Wiedmann M; Lochmüller H; Werner S J Biol Chem; 1999 May; 274(19):13305-10. PubMed ID: 10224091 [TBL] [Abstract][Full Text] [Related]
7. The E3 SUMO ligase Nse2 regulates sumoylation and nuclear-to-cytoplasmic translocation of skNAC-Smyd1 in myogenesis. Berkholz J; Michalick L; Munz B J Cell Sci; 2014 Sep; 127(Pt 17):3794-804. PubMed ID: 25002400 [TBL] [Abstract][Full Text] [Related]
8. skNAC depletion stimulates myoblast migration and perturbs sarcomerogenesis by enhancing calpain 1 and 3 activity. Berkholz J; Zakrzewicz A; Munz B Biochem J; 2013 Jul; 453(2):303-10. PubMed ID: 23662692 [TBL] [Abstract][Full Text] [Related]
9. skNAC (skeletal Naca), a muscle-specific isoform of Naca (nascent polypeptide-associated complex alpha), is required for myofibril organization. Li H; Randall WR; Du SJ FASEB J; 2009 Jun; 23(6):1988-2000. PubMed ID: 19211926 [TBL] [Abstract][Full Text] [Related]
10. Exon 4-encoded acidic domain in the epithelium-restricted Ets factor, ESX, confers potent transactivating capacity and binds to TATA-binding protein (TBP). Chang CH; Scott GK; Baldwin MA; Benz CC Oncogene; 1999 Jun; 18(25):3682-95. PubMed ID: 10391676 [TBL] [Abstract][Full Text] [Related]
11. Myocyte nuclear factor, a novel winged-helix transcription factor under both developmental and neural regulation in striated myocytes. Bassel-Duby R; Hernandez MD; Yang Q; Rochelle JM; Seldin MF; Williams RS Mol Cell Biol; 1994 Jul; 14(7):4596-605. PubMed ID: 8007964 [TBL] [Abstract][Full Text] [Related]
12. Overexpression of the skNAC gene in human rhabdomyosarcoma cells enhances their differentiation potential and inhibits tumor cell growth and spreading. Berkholz J; Kuzyniak W; Hoepfner M; Munz B Clin Exp Metastasis; 2014 Dec; 31(8):869-79. PubMed ID: 25209525 [TBL] [Abstract][Full Text] [Related]
13. Dual promoter structure of ZFP106: regulation by myogenin and nuclear respiratory factor-1. Grasberger H; Ye H; Mashima H; Bell GI Gene; 2005 Jan; 344():143-59. PubMed ID: 15656981 [TBL] [Abstract][Full Text] [Related]
14. Developmental and muscle-specific regulation of avian fast skeletal troponin T isoform expression by mRNA splicing. Bucher EA; de la Brousse FC; Emerson CP J Biol Chem; 1989 Jul; 264(21):12482-91. PubMed ID: 2745456 [TBL] [Abstract][Full Text] [Related]
15. siRNA-mediated inhibition of skNAC and Smyd1 expression disrupts myofibril organization: Immunofluorescence and electron microscopy study in C2C12 cells. Berkholz J; Eberle R; Boller K; Munz B Micron; 2018 May; 108():6-10. PubMed ID: 29499397 [TBL] [Abstract][Full Text] [Related]
16. Identification of a murine TEF-1-related gene expressed after mitogenic stimulation of quiescent fibroblasts and during myogenic differentiation. Hsu DK; Guo Y; Alberts GF; Copeland NG; Gilbert DJ; Jenkins NA; Peifley KA; Winkles JA J Biol Chem; 1996 Jun; 271(23):13786-95. PubMed ID: 8662936 [TBL] [Abstract][Full Text] [Related]
17. Cloning and functional analysis of spliced isoforms of human nuclear factor I-X: interference with transcriptional activation by NFI/CTF in a cell-type specific manner. Apt D; Liu Y; Bernard HU Nucleic Acids Res; 1994 Sep; 22(19):3825-33. PubMed ID: 7937100 [TBL] [Abstract][Full Text] [Related]
18. Lysine Methyltransferase SMYD1 Regulates Myogenesis via skNAC Methylation. Zhu L; Brown MA; Sims RJ; Tiwari GR; Nie H; Mayfield RD; Tucker HO Cells; 2023 Jun; 12(13):. PubMed ID: 37443729 [TBL] [Abstract][Full Text] [Related]
19. Molecular characterization of the murine Hif-1 alpha locus. Luo G; Gu YZ; Jain S; Chan WK; Carr KM; Hogenesch JB; Bradfield CA Gene Expr; 1997; 6(5):287-99. PubMed ID: 9368100 [TBL] [Abstract][Full Text] [Related]
20. Transcriptional repression by the orphan steroid receptor RVR/Rev-erb beta is dependent on the signature motif and helix 5 in the E region: functional evidence for a biological role of RVR in myogenesis. Burke L; Downes M; Carozzi A; Giguère V; Muscat GE Nucleic Acids Res; 1996 Sep; 24(18):3481-9. PubMed ID: 8836172 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]