BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 8698236)

  • 1. Differential splicing-in of a proline-rich exon converts alphaNAC into a muscle-specific transcription factor.
    Yotov WV; St-Arnaud R
    Genes Dev; 1996 Jul; 10(14):1763-72. PubMed ID: 8698236
    [TBL] [Abstract][Full Text] [Related]  

  • 2. skNAC and Smyd1 in transcriptional control.
    Berkholz J; Orgeur M; Stricker S; Munz B
    Exp Cell Res; 2015 Aug; 336(2):182-91. PubMed ID: 26162853
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Skeletal muscle-specific variant of nascent polypeptide associated complex alpha (skNAC): implications for a specific role in mammalian myoblast differentiation.
    Berger F; Berkholz J; Breustedt T; Ploen D; Munz B
    Eur J Cell Biol; 2012 Feb; 91(2):150-5. PubMed ID: 22154550
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Conservation and expression of an alternative 3' exon of Runx2 encoding a novel proline-rich C-terminal domain.
    Terry A; Kilbey A; Vaillant F; Stewart M; Jenkins A; Cameron E; Neil JC
    Gene; 2004 Jul; 336(1):115-25. PubMed ID: 15225881
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transcriptional regulation of the mouse PNRC2 promoter by the nuclear factor Y (NFY) and E2F1.
    Zhou D; Masri S; Ye JJ; Chen S
    Gene; 2005 Nov; 361():89-100. PubMed ID: 16181749
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cloning of novel injury-regulated genes. Implications for an important role of the muscle-specific protein skNAC in muscle repair.
    Munz B; Wiedmann M; Lochmüller H; Werner S
    J Biol Chem; 1999 May; 274(19):13305-10. PubMed ID: 10224091
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The E3 SUMO ligase Nse2 regulates sumoylation and nuclear-to-cytoplasmic translocation of skNAC-Smyd1 in myogenesis.
    Berkholz J; Michalick L; Munz B
    J Cell Sci; 2014 Sep; 127(Pt 17):3794-804. PubMed ID: 25002400
    [TBL] [Abstract][Full Text] [Related]  

  • 8. skNAC depletion stimulates myoblast migration and perturbs sarcomerogenesis by enhancing calpain 1 and 3 activity.
    Berkholz J; Zakrzewicz A; Munz B
    Biochem J; 2013 Jul; 453(2):303-10. PubMed ID: 23662692
    [TBL] [Abstract][Full Text] [Related]  

  • 9. skNAC (skeletal Naca), a muscle-specific isoform of Naca (nascent polypeptide-associated complex alpha), is required for myofibril organization.
    Li H; Randall WR; Du SJ
    FASEB J; 2009 Jun; 23(6):1988-2000. PubMed ID: 19211926
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Exon 4-encoded acidic domain in the epithelium-restricted Ets factor, ESX, confers potent transactivating capacity and binds to TATA-binding protein (TBP).
    Chang CH; Scott GK; Baldwin MA; Benz CC
    Oncogene; 1999 Jun; 18(25):3682-95. PubMed ID: 10391676
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Myocyte nuclear factor, a novel winged-helix transcription factor under both developmental and neural regulation in striated myocytes.
    Bassel-Duby R; Hernandez MD; Yang Q; Rochelle JM; Seldin MF; Williams RS
    Mol Cell Biol; 1994 Jul; 14(7):4596-605. PubMed ID: 8007964
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Overexpression of the skNAC gene in human rhabdomyosarcoma cells enhances their differentiation potential and inhibits tumor cell growth and spreading.
    Berkholz J; Kuzyniak W; Hoepfner M; Munz B
    Clin Exp Metastasis; 2014 Dec; 31(8):869-79. PubMed ID: 25209525
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dual promoter structure of ZFP106: regulation by myogenin and nuclear respiratory factor-1.
    Grasberger H; Ye H; Mashima H; Bell GI
    Gene; 2005 Jan; 344():143-59. PubMed ID: 15656981
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Developmental and muscle-specific regulation of avian fast skeletal troponin T isoform expression by mRNA splicing.
    Bucher EA; de la Brousse FC; Emerson CP
    J Biol Chem; 1989 Jul; 264(21):12482-91. PubMed ID: 2745456
    [TBL] [Abstract][Full Text] [Related]  

  • 15. siRNA-mediated inhibition of skNAC and Smyd1 expression disrupts myofibril organization: Immunofluorescence and electron microscopy study in C2C12 cells.
    Berkholz J; Eberle R; Boller K; Munz B
    Micron; 2018 May; 108():6-10. PubMed ID: 29499397
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of a murine TEF-1-related gene expressed after mitogenic stimulation of quiescent fibroblasts and during myogenic differentiation.
    Hsu DK; Guo Y; Alberts GF; Copeland NG; Gilbert DJ; Jenkins NA; Peifley KA; Winkles JA
    J Biol Chem; 1996 Jun; 271(23):13786-95. PubMed ID: 8662936
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cloning and functional analysis of spliced isoforms of human nuclear factor I-X: interference with transcriptional activation by NFI/CTF in a cell-type specific manner.
    Apt D; Liu Y; Bernard HU
    Nucleic Acids Res; 1994 Sep; 22(19):3825-33. PubMed ID: 7937100
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sequence-specific DNA binding by the alphaNAC coactivator is required for potentiation of c-Jun-dependent transcription of the osteocalcin gene.
    Akhouayri O; Quélo I; St-Arnaud R
    Mol Cell Biol; 2005 May; 25(9):3452-60. PubMed ID: 15831452
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular characterization of the murine Hif-1 alpha locus.
    Luo G; Gu YZ; Jain S; Chan WK; Carr KM; Hogenesch JB; Bradfield CA
    Gene Expr; 1997; 6(5):287-99. PubMed ID: 9368100
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transcriptional repression by the orphan steroid receptor RVR/Rev-erb beta is dependent on the signature motif and helix 5 in the E region: functional evidence for a biological role of RVR in myogenesis.
    Burke L; Downes M; Carozzi A; Giguère V; Muscat GE
    Nucleic Acids Res; 1996 Sep; 24(18):3481-9. PubMed ID: 8836172
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.