These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

392 related articles for article (PubMed ID: 8698454)

  • 1. Bacterially induced bone destruction: mechanisms and misconceptions.
    Nair SP; Meghji S; Wilson M; Reddi K; White P; Henderson B
    Infect Immun; 1996 Jul; 64(7):2371-80. PubMed ID: 8698454
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biological aspects of altered bone remodeling in multiple myeloma and possibilities of pharmacological intervention.
    Kupisiewicz K
    Dan Med Bull; 2011 May; 58(5):B4277. PubMed ID: 21535989
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Apoptosis-associated uncoupling of bone formation and resorption in osteomyelitis.
    Marriott I
    Front Cell Infect Microbiol; 2013; 3():101. PubMed ID: 24392356
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sesquiterpene lactone parthenolide blocks lipopolysaccharide-induced osteolysis through the suppression of NF-kappaB activity.
    Yip KH; Zheng MH; Feng HT; Steer JH; Joyce DA; Xu J
    J Bone Miner Res; 2004 Nov; 19(11):1905-16. PubMed ID: 15476591
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interaction between osteoblast and osteoclast: impact in bone disease.
    Phan TC; Xu J; Zheng MH
    Histol Histopathol; 2004 Oct; 19(4):1325-44. PubMed ID: 15375775
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Osteoclast-derived activity in the coupling of bone formation to resorption.
    Martin TJ; Sims NA
    Trends Mol Med; 2005 Feb; 11(2):76-81. PubMed ID: 15694870
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hard labour: bacterial infection of the skeleton.
    Henderson B; Nair SP
    Trends Microbiol; 2003 Dec; 11(12):570-7. PubMed ID: 14659689
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Noncanonical G-protein-dependent modulation of osteoclast differentiation and bone resorption mediated by Pasteurella multocida toxin.
    Strack J; Heni H; Gilsbach R; Hein L; Aktories K; Orth JH
    mBio; 2014 Nov; 5(6):e02190. PubMed ID: 25389180
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Surface-associated proteins from Staphylococcus aureus demonstrate potent bone resorbing activity.
    Nair S; Song Y; Meghji S; Reddi K; Harris M; Ross A; Poole S; Wilson M; Henderson B
    J Bone Miner Res; 1995 May; 10(5):726-34. PubMed ID: 7639108
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bone Remodeling and the Role of TRAF3 in Osteoclastic Bone Resorption.
    Boyce BF; Li J; Xing L; Yao Z
    Front Immunol; 2018; 9():2263. PubMed ID: 30323820
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dendritic cells-derived interferon-λ1 ameliorated inflammatory bone destruction through inhibiting osteoclastogenesis.
    Chen Y; Wang Y; Tang R; Yang J; Dou C; Dong Y; Sun D; Zhang C; Zhang L; Tang Y; Dai Q; Luo F; Xu J; Dong S
    Cell Death Dis; 2020 Jun; 11(6):414. PubMed ID: 32488049
    [TBL] [Abstract][Full Text] [Related]  

  • 12.
    Chakraborty S; Kloos B; Harre U; Schett G; Kubatzky KF
    Front Immunol; 2017; 8():185. PubMed ID: 28289415
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Diallyl disulfide alleviates inflammatory osteolysis by suppressing osteoclastogenesis
    Yang J; Tang R; Yi J; Chen Y; Li X; Yu T; Fei J
    FASEB J; 2019 Jun; 33(6):7261-7273. PubMed ID: 30857415
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inflammasomes in Alveolar Bone Loss.
    Li Y; Ling J; Jiang Q
    Front Immunol; 2021; 12():691013. PubMed ID: 34177950
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bone cell interactions and regulation by inflammatory mediators.
    Oates TW; Cochran DL
    Curr Opin Periodontol; 1996; 3():34-44. PubMed ID: 8624568
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Expression of osteoclastogenic and anti-osteoclastogenic cytokines differs in mouse gingiva injected with lipopolysaccharide, peptidoglycan, or both.
    Ozaki Y; Kishimoto T; Yamashita Y; Kaneko T; Higuchi K; Mae M; Oohira M; Mohammad AI; Yanagiguchi K; Yoshimura A
    Arch Oral Biol; 2021 Feb; 122():104990. PubMed ID: 33259988
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The angiotensin converting enzyme 2/angiotensin-(1-7)/Mas Receptor axis as a key player in alveolar bone remodeling.
    Queiroz-Junior CM; Santos ACPM; Galvão I; Souto GR; Mesquita RA; Sá MA; Ferreira AJ
    Bone; 2019 Nov; 128():115041. PubMed ID: 31442676
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Puerarin Prevents LPS-Induced Osteoclast Formation and Bone Loss via Inhibition of Akt Activation.
    Zhang Y; Yan M; Yu QF; Yang PF; Zhang HD; Sun YH; Zhang ZF; Gao YF
    Biol Pharm Bull; 2016; 39(12):2028-2035. PubMed ID: 27904045
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inhibition of osteoclastogenesis by osteoblast-like cells genetically engineered to produce interleukin-10.
    Fujioka K; Kishida T; Ejima A; Yamamoto K; Fujii W; Murakami K; Seno T; Yamamoto A; Kohno M; Oda R; Yamamoto T; Fujiwara H; Kawahito Y; Mazda O
    Biochem Biophys Res Commun; 2015 Jan; 456(3):785-91. PubMed ID: 25514036
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Toll-Like Receptor 2 Stimulation of Osteoblasts Mediates Staphylococcus Aureus Induced Bone Resorption and Osteoclastogenesis through Enhanced RANKL.
    Kassem A; Lindholm C; Lerner UH
    PLoS One; 2016; 11(6):e0156708. PubMed ID: 27311019
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.