BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 8698579)

  • 1. Radon concentrations and exposure levels in Hungarian caves.
    Szerbin P
    Health Phys; 1996 Sep; 71(3):362-9. PubMed ID: 8698579
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Radon as a tracer of daily, seasonal and spatial air movements in the Underground Tourist Route "Coal Mine" (SW Poland).
    Tchorz-Trzeciakiewicz DE; Parkitny T
    J Environ Radioact; 2015 Nov; 149():90-8. PubMed ID: 26225833
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comprehensive investigation of radon exposure in Austrian tourist mines and caves.
    Gruber V; Ringer W; Gräser J; Aspek W; Gschnaller J
    Radiat Prot Dosimetry; 2014 Nov; 162(1-2):78-82. PubMed ID: 25013031
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Occupational exposure to radon for underground tourist routes in Poland: Doses to lung and the risk of developing lung cancer.
    Walczak K; Olszewski J; Politański P; Zmyślony M
    Int J Occup Med Environ Health; 2017 Jul; 30(5):687-694. PubMed ID: 28584312
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Radon levels in Romanian caves: an occupational exposure survey.
    Cucoş Dinu A; Călugăr MI; Burghele BD; Dumitru OA; Cosma C; Onac BP
    Environ Geochem Health; 2017 Oct; 39(5):1085-1099. PubMed ID: 27696229
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Radon progeny in Egyptian underground phosphate mines.
    el-Hady MA; Mohammed A; el-Hussein A; Ali AE; Ahmed AA
    Radiat Prot Dosimetry; 2001; 95(1):63-8. PubMed ID: 11468809
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Analysis of the main factors affecting the evaluation of the radon dose in workplaces: the case of tourist caves.
    Sainz C; Quindós LS; Fuente I; Nicolás J; Quindós L
    J Hazard Mater; 2007 Jul; 145(3):368-71. PubMed ID: 17184916
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Measuring radon concentrations and estimating dose in tourist caves.
    Martín Sánchez A; de la Torre Pérez J; Ruano Sánchez AB; Naranjo Correa FL
    Radiat Prot Dosimetry; 2015 Nov; 167(1-3):279-83. PubMed ID: 25948834
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Time variations of 222Rn concentration and air exchange rates in a Hungarian cave.
    Nagy HÉ; Szabó Z; Jordán G; Szabó C; Horváth A; Kiss A
    Isotopes Environ Health Stud; 2012 Sep; 48(3):464-72. PubMed ID: 22462600
    [TBL] [Abstract][Full Text] [Related]  

  • 10. REASSESSMENT OF INHALATION DOSES TO WORKERS IN AUSTRALIAN SHOW CAVES.
    Solomon SB
    Radiat Prot Dosimetry; 2019 Oct; 184(3-4):298-301. PubMed ID: 31330001
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High radon levels in subterranean environments: monitoring and technical criteria to ensure human safety (case of Castañar cave, Spain).
    Alvarez-Gallego M; Garcia-Anton E; Fernandez-Cortes A; Cuezva S; Sanchez-Moral S
    J Environ Radioact; 2015 Jul; 145():19-29. PubMed ID: 25863322
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Atmospheric 222Rn in tourist caves of Slovenia, Yugoslavia.
    Kobal I; Smodis B; Burger J; Skofljanec M
    Health Phys; 1987 Apr; 52(4):473-9. PubMed ID: 3570790
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Radon exposure in uranium mining industry vs. exposure in tourist caves.
    Quindós Poncela L; Fernández Navarro P; Sainz Fernández C; Gómez Arozamena J; Bordonoba Perez M
    Radiat Prot Dosimetry; 2004; 111(1):41-4. PubMed ID: 15367766
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Radon dose calculation methodology for underground workers in the Czech Republic.
    Thinova L; Rovenska K
    Radiat Prot Dosimetry; 2011 May; 145(2-3):233-7. PubMed ID: 21474473
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The overview of the radon and environmental characteristics measurements in the Czech show caves.
    Thinová L; Froňka A; Rovenská K
    Radiat Prot Dosimetry; 2015 Jun; 164(4):502-9. PubMed ID: 25999331
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A COMPREHENSIVE CHARACTERISTIC OF 222Rn ACTIVITY CONCENTRATION CHANGES AND IONISING RADIATION EXPOSURE IN NEWLY DISCOVERED PARTS OF BEAR CAVE IN KLETNO, POLAND.
    Fijałkowska-Lichwa L; Przylibski TA
    Radiat Prot Dosimetry; 2020 Jun; 188(1):79-97. PubMed ID: 31730695
    [TBL] [Abstract][Full Text] [Related]  

  • 17. DISTRIBUTION OF RADON GAS IN ROMANIAN SHOW CAVES AND RADIATION SAFETY.
    Burghele BD; Cucos A; Papp B; Stetca FA; Mirea I; Constantin S
    Radiat Prot Dosimetry; 2018 Sep; 181(1):1-5. PubMed ID: 29897577
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nanosize radon short-lived decay products in the air of the Postojna Cave.
    Vaupotic J
    Sci Total Environ; 2008 Apr; 393(1):27-38. PubMed ID: 18237766
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Radon in the creswell crags Permian limestone caves.
    Gillmore GK; Phillips PS; Denman AR; Gilbertson DD
    J Environ Radioact; 2002; 62(2):165-79. PubMed ID: 12171469
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparative studies on radon seasonal variations in various undeground environments: Cases of abandoned Beshtaugorskiy uranium mine and Kungur Ice Cave.
    Miklyaev PS; Petrova TB; Maksimovich NG; Krasikov AV; Klimshin AV; Shchitov DV; Sidyakin PA; Tsebro DN; Meshcheriakova OY
    J Environ Radioact; 2024 Feb; 272():107346. PubMed ID: 38043218
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.