BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 8698691)

  • 1. Characterization of electrolytically prepared brushite and hydroxyapatite coatings on orthopedic alloys.
    Redepenning J; Schlessinger T; Burnham S; Lippiello L; Miyano J
    J Biomed Mater Res; 1996 Mar; 30(3):287-94. PubMed ID: 8698691
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Histological and biomechanical evaluation of calcium phosphate coatings applied through surface-induced mineralization to porous titanium implants.
    Wheeler DL; Campbell AA; Graff GL; Miller GJ
    J Biomed Mater Res; 1997 Mar; 34(4):539-43. PubMed ID: 9054537
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrodeposition of brushite coatings and their transformation to hydroxyapatite in aqueous solutions.
    Kumar M; Dasarathy H; Riley C
    J Biomed Mater Res; 1999 Jun; 45(4):302-10. PubMed ID: 10321702
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In vitro evaluation of amorphous calcium phosphate and poorly crystallized hydroxyapatite coatings on titanium implants.
    Maxian SH; Zawadsky JP; Dunn MG
    J Biomed Mater Res; 1993 Jan; 27(1):111-7. PubMed ID: 8380594
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The structural characteristics and mechanical behaviors of nonstoichiometric apatite coatings sintered in air atmosphere.
    Han Y; Xu K; Lu J; Wu Z
    J Biomed Mater Res; 1999 Jun; 45(3):198-203. PubMed ID: 10397976
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In vitro study of electrodeposited fluoridated hydroxyapatite coating on G-II titanium with a nanostructured TiO
    Lin JS; Tsai TB; Say WC; Chiu C; Chen SH
    Biomed Mater; 2017 Apr; 12(2):025018. PubMed ID: 28374679
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biocompatible hydrophilic brushite coatings on AZX310 and AM50 alloys for orthopaedic implants.
    Sasikumar Y; Kumar AM; Babu RS; Rahman MM; Samyn LM; de Barros ALF
    J Mater Sci Mater Med; 2018 Jul; 29(8):123. PubMed ID: 30032462
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transformation of modified brushite to hydroxyapatite in aqueous solution: effects of potassium substitution.
    Kumar M; Xie J; Chittur K; Riley C
    Biomaterials; 1999 Aug; 20(15):1389-99. PubMed ID: 10454010
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Calcium phosphate plasma-sprayed coatings and their stability: an in vivo study.
    Klein CP; Wolke JG; de Blieck-Hogervorst JM; de Groot K
    J Biomed Mater Res; 1994 Aug; 28(8):909-17. PubMed ID: 7983089
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bone growth on and resorption of calcium phosphate coatings obtained by pulsed laser deposition.
    Clèries L; Fernández-Pradas JM; Morenza JL
    J Biomed Mater Res; 2000 Jan; 49(1):43-52. PubMed ID: 10559745
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bone-bonding behavior of plasma-sprayed coatings of BioglassR, AW-glass ceramic, and tricalcium phosphate on titanium alloy.
    Kitsugi T; Nakamura T; Oka M; Senaha Y; Goto T; Shibuya T
    J Biomed Mater Res; 1996 Feb; 30(2):261-9. PubMed ID: 9019492
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Assessment of bone ingrowth potential of biomimetic hydroxyapatite and brushite coated porous E-beam structures.
    Biemond JE; Eufrásio TS; Hannink G; Verdonschot N; Buma P
    J Mater Sci Mater Med; 2011 Apr; 22(4):917-25. PubMed ID: 21327405
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electrolytic deposition of lithium into calcium phosphate coatings.
    Wang J; de Groot K; van Blitterswijk C; de Boer J
    Dent Mater; 2009 Mar; 25(3):353-9. PubMed ID: 18804857
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effect of hydroxyapatite coating on bone growth into porous titanium alloy implants.
    Oonishi H; Yamamoto M; Ishimaru H; Tsuji E; Kushitani S; Aono M; Ukon Y
    J Bone Joint Surg Br; 1989 Mar; 71(2):213-6. PubMed ID: 2925737
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Gradient coatings of strontium hydroxyapatite/zinc β-tricalcium phosphate as a tool to modulate osteoblast/osteoclast response.
    Boanini E; Torricelli P; Sima F; Axente E; Fini M; Mihailescu IN; Bigi A
    J Inorg Biochem; 2018 Jun; 183():1-8. PubMed ID: 29525694
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluation of factors affecting bonding rate of calcium phosphate ceramic coatings for in vivo strain gauge attachment.
    Szivek JA; Anderson PL; Dishongh TJ; DeYoung DW
    J Biomed Mater Res; 1996; 33(3):121-32. PubMed ID: 8864883
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In vitro and in vivo mechanical evaluations of plasma-sprayed hydroxyapatite coatings on titanium implants: the effect of coating characteristics.
    Yang CY; Lin RM; Wang BC; Lee TM; Chang E; Hang YS; Chen PQ
    J Biomed Mater Res; 1997 Dec; 37(3):335-45. PubMed ID: 9368138
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanical and histological evaluation of amorphous calcium phosphate and poorly crystallized hydroxyapatite coatings on titanium implants.
    Maxian SH; Zawadsky JP; Dunn MG
    J Biomed Mater Res; 1993 Jun; 27(6):717-28. PubMed ID: 8408101
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Histomorphometric assessment of the mechanisms for rapid ingrowth of bone to HA/TCP coated implants.
    Burr DB; Mori S; Boyd RD; Sun TC; Blaha JD; Lane L; Parr J
    J Biomed Mater Res; 1993 May; 27(5):645-53. PubMed ID: 8314817
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanical properties of calcium phosphate coatings deposited by laser ablation.
    Clèries L; Martínez E; Fernández-Pradas JM; Sardin G; Esteve J; Morenza JL
    Biomaterials; 2000 May; 21(9):967-71. PubMed ID: 10735474
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.